High-Power Performance of a 100-kW class Nested Hall Thruster

Scott J. Hall, Benjamin A. Jorns, and Alec D. Gallimore
University of Michigan

Hani Kamhawi, Thomas W. Haag, and Jonathan A. Mackey
NASA Glenn Research Center

James H. Gilland
Ohio Aerospace Institute

Peter Y. Peterson
Vantage Partners

Matthew J. Baird
Western Michigan University
Many missions are enabled by multi-hundred kW EP systems

- **Earth orbit transfer**: 200 kW @ 1500 s: LEO to GEO transfer
- **Near-Earth asteroids**: 300 kW @ 1800 s: cargo tug
- **Phobos**: 300 kW @ 3000 s: cargo, 700 kW @ 1800 s: humans
- **Mars**: 600 kW @ 3000 s: cargo, 800 kW @ 3000 s: humans
NASA is funding three options for 100-kW class electric propulsion.
The XR-100 system features the X3, a nested Hall thruster developed at UM.
The XR-100 system
The XR-100 system

VF5 (GRC)

PLASMA & THERMAL MODELING (JPL)

X3 NHT (UM)

300 A LaB$_6$ CATHODE (JPL)

TESTING INFRASTRUCTURE (GRC)

XFC (AR)

100-kW PPU (AR)

Aerojet Rocketdyne

NASA

University of Michigan
Testing focused on thruster and facilities

- X3 NHT (UM)
- 300 A LaB₆ CATHODE (JPL)
- VF5 (GRC)
- TESTING INFRASTRUCTURE (GRC)
A Brief History of NASA High-Power Hall Thruster Development
Timeline of NASA high-power Hall thruster development

1999

NASA-457M
- 50 kW class
- Operated to 100 kW (850 V and 1000 V)
Timeline of NASA high-power Hall thruster development

1999

NASA-457M
- 50 kW class
- Operated to 100 kW (850 V and 1000 V)

2003

NASA-400M
- 50 kW class
- High-I_{sp} operation (via NASA-173M)
Timeline of NASA high-power Hall thruster development

1999

NASA-457M
- 50 kW class
- Operated to 100 kW (850 V and 1000 V)

2003

NASA-400M
- 50 kW class
- High-I_{sp} operation (via NASA-173M)

2004/2012

NASA-457Mv2
- 50 kW class
- Improved efficiency over v1
Timeline of NASA high-power Hall thruster development

<table>
<thead>
<tr>
<th>Year</th>
<th>Model</th>
<th>Class</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>NASA-457M</td>
<td>50 kW class</td>
<td>Operated to 100 kW (850 V and 1000 V)</td>
</tr>
<tr>
<td>2003</td>
<td>NASA-400M</td>
<td>50 kW class</td>
<td>High-I_{sp} operation (via NASA-173M)</td>
</tr>
<tr>
<td>2004/2012</td>
<td>NASA-457Mv2</td>
<td>50 kW class</td>
<td>Improved efficiency over v1</td>
</tr>
<tr>
<td>2005/2011</td>
<td>NASA-300M</td>
<td>20 kW class</td>
<td>Best efficiency yet (65-73% anode)</td>
</tr>
</tbody>
</table>
All this work (and lessons learned) fed directly into X3 design
Open questions about the X3 and NHTs

- Does the X3 provide expected performance?
- Are there cathode coupling issues?
- How do the channels interact with each other?
X3 Performance Results
Thruster was throttled through 47 unique conditions

<table>
<thead>
<tr>
<th></th>
<th>300 V</th>
<th>400 V</th>
<th>500 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I+O</td>
<td>0.6 j_{ref}</td>
<td>0.6 j_{ref}</td>
<td>0.6 j_{ref}</td>
</tr>
<tr>
<td>M+O</td>
<td>1.0 j_{ref}</td>
<td>1.0 j_{ref}</td>
<td>1.0 j_{ref}</td>
</tr>
<tr>
<td>I+M+O</td>
<td>1.3 j_{ref}**</td>
<td>1.3 j_{ref}**</td>
<td></td>
</tr>
</tbody>
</table>

At each (V_{dr}, j) condition:

- Inner (I)
- Middle (M)
- Outer (O)
- I+O
- I+M
- I+O+M
- M+O
- I+M+O
Thrust versus power is linear for each discharge voltage.
Thrust versus power is linear for each discharge voltage.

5.4 N at 400 V, 98 kW
Average T/P ratio compared to other high-power thrusters
Average T/P ratio compared to other high-power thrusters

![Graph showing the average T/P ratio compared to other high-power thrusters. The graph plots discharge voltage against average T/P ratio, with data points for NASA-457Mv1 and NASA-400M.](image-url)
Average T/P ratio compared to other high-power thrusters
Average T/P ratio compared to other high-power thrusters
Maximum anode efficiency compared to other thrusters
Maximum anode efficiency compared to other thrusters
Maximum anode efficiency compared to other thrusters

![Graph showing maximum anode efficiency vs. discharge voltage for different thrusters. The graph includes data for NASA-457Mv1, NASA-400M, and NASA-300M.](image-url)
Maximum anode efficiency compared to other thrusters
Open questions about the X3 and NHTs

- Does the X3 provide expected performance?
- Are there cathode coupling issues?
- How do the channels interact with each other?
Cathode to ground voltage varied between -9 and -14 V.
Open questions about the X3 and NHTs

- Does the X3 provide expected performance?
- Are there cathode coupling issues?
- How do the channels interact with each other?
Thrust for I+M+O is not significantly higher than sum of individual channels
Thrust for I+M+O is not significantly higher than sum of individual channels
X2 work showed 5—11% increase in multi-channel thrust
Oscillations changed between single- and multi-channel operation
Example PSD from multi-channel operation
Example PSD from multi-channel operation

Inner breathing at different frequency

PSD of I_D

Frequency, kHz

Inner, Middle, Outer
Example PSD from multi-channel operation

- Inner breathing at different frequency
- Higher-frequency peak decreases in frequency and broadens

![Graph showing PSD of I_D vs Frequency, kHz].

- Log scale for PSD: 10^1 to 10^6
- Frequency range: 20 kHz to 100 kHz
- Lines represent Inner, Middle, and Outer channels.
Example PSD from multi-channel operation

Inner breathing at different frequency

Higher-frequency peak decreases in frequency and broadens
Example PSD from multi-channel operation

Inner breathing at different frequency

Higher-frequency peak decreases in frequency and broadens

PSD of I_D

Frequency, kHz
Open questions about the X3 and NHTs

- Does the X3 provide expected performance?
- Are there cathode coupling issues?
- How do the channels interact with each other?
The X3 is expanding the boundaries of Hall thruster operation

96 kW @ 3460 s

112 A

3.3 N
The X3 is expanding the boundaries of Hall thruster operation.

- 96 kW @ 3460 s ($\eta_t=0.58$)
 - 112 A
 - 3.3 N

- 102 kW @ 2400-2600 s ($\eta_t=0.63$)
 - 247 A
 - 5.4 N
The X3 is expanding the boundaries of Hall thruster operation

96 kW @ 3460 s ($\eta_t=0.58$)
112 A 3.3 N

102 kW @ 2400-2600 s ($\eta_t=0.63$)
247 A 5.4 N
Acknowledgments

- NASA Space Technology Fellowship (NNX14AL67H)
- NASA Next Space Technologies for Exploration Partnerships (NNH16CP17C)
- At GRC: Eric Pencil, Luis Pinero, Wensheng Huang, Taylor Seablom, Chad Joppeck, Richard Senyitko, Jim Zakany, Nick Lalli, Jim Zologowski, Kevin Blake, Joshua Gibson, David Yendriga, Larry Hambly, George Jacynycz
- Dan M. Goebel at JPL
- Sarah E. Cusson at UM
Questions?
Backup Slides
Anode specific impulse versus discharge power
Consistent except for low current density
Maximum anode I_{sp} comparable to other high-power Hall thrusters