Structural Heat Intercept, Insulation, and Vibration Evaluation Rig (SHIIVER)

Wesley Johnson, SHIIVER Technologist
Joe Zoeckler, SHIIVER Product Lead Engineer
Lauren Ameen, SHIIVER Deputy Product Lead Engineer

NASA GRC
July 6, 2017
Space Cryogenics Workshop
Structural Heat Intercept, Insulation, and Vibration Evaluation Rig (SHIIVER)

SLS

EUS

SHIIVER

Boil-off vapor cooling on forward skirt

Curtain that can be lowered to simulate external MLI solution thermal benefit

Forward and Aft structural skirts
- Baseline for EUS

Traditional MLI on top and bottom domes

Spray on Foam Insulation on barrel and top and bottom domes
- Baseline for EUS

Test Flow

Baseline Test (SOFI Only) ➔ Install MLI on domes ➔ Pre Acoustic Thermal Test ➔ Acoustic Test ➔ Post Acoustic Thermal Test

B2

SPF
Structural Heat Intercept, Insulation, and Vibration Evaluation Rig (SHIIVER)

Objectives:
- Perform sub-scale engineering development to ensure that the heat intercept approaches for the large-scale rig are stage-representative.
- Build a large stage-representative rig capable of testing cryogenic fluid management technologies.
- Perform an initial test of the large rig under mission-representative environmental conditions using one configuration of a possible stage-like heat intercept system (vapor cooling and multilayer insulation).

Status:
- Tank Engineering Design Approved: Dec 2016
- MLI Preliminary Design Review: Feb 2017
- Stakeholders Reviews: June 2015, July 2016
- SHIIVER Concept Review: August 2015

Schedule:
- Receive Tank at MSFC: July 2017
- Finish Sub-scale Vapor Cooling Testing: Aug 2017
- SOFI Installation completed: October 2017
- Testing Starting: August 2018
- Testing Completed: May 2019
- Final Report: April 2020

<table>
<thead>
<tr>
<th>KPP</th>
<th>State of the Art</th>
<th>Project Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLI Thermal Performance on a 4 m tank</td>
<td>SOFI baseline testing done by eCryo</td>
<td>40% boil-off reduction after exposure to acoustic vibration loads</td>
</tr>
<tr>
<td>MLI Mass on a 4 m tank</td>
<td>Thick MLI has not been demonstrated in</td>
<td>MLI added mass of not more than 2% of tank fluid mass</td>
</tr>
<tr>
<td></td>
<td>a manner representative of an upper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stage flight application.</td>
<td></td>
</tr>
<tr>
<td>Vapor Based Heat Intercept Thermal</td>
<td>Small flight helium dewars (<2 m). CRYOTE testing (0.75 m)</td>
<td>15% boil-off reduction on 4 m tank at 50% full</td>
</tr>
<tr>
<td>Performance on a 4 m tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Based Heat Intercept Mass on a 4 m</td>
<td>CRYOTE testing (.75 m tank) 9% of tank fluid mass (using LH2 density)</td>
<td>Not more than 5% of tank fluid mass</td>
</tr>
<tr>
<td>tank</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHIIVER is developing the baseline for thermal performance both of existing upper stages and technology enhancements.
Sub-scale Vapor Cooling Testing

- **Looking at two different flow channels:**
 - Welded, with flow directly on skirt surface
 - Bolted channel assembly
- **Preliminary results from welded flow channel** shows a 50%+ reduction in heat load through the skirt. Heat load appears to be more strongly correlated to the inlet coolant temperature.
- **Remaining tests:**
 - Bolted channel assembly – July 2017
Multilayer Insulation

- **Design, Fabrication, and Install by Aerospace Fabrication and Materials**
 - Three pieces:
 - MLI for domes – needed for pre-acoustic thermal vacuum testing
 - MLI for curtains – needed for baseline testing
 - MLI for interior of skirts – needed for baseline testing
 - Coupon Testing Feb – June 2017 to verify performance and help scale/analyze data

- **Specifications**
 - 30 layers
 - Attached at outer diameter on skirts
 - Attached near inner manway
 - Expected heat flux less than 1 W/m²

- **Current projected mass: 40 kg**
SHIIVER Components

Forward Skirt:
- Design in progress (dependent on SLICE activity)
- Fabrication planned at GRC
- Anticipated Delivery: 12/17

Test Tank:
- Includes manways & “shipping skirts”
- Awarded to Didion on 10/16
- Fabrication completed
- Cold shock completed
- Cleaning/leak test prior to shipment
- Anticipated Delivery to MSFC: 7/17

Aft skirt:
- Design complete
- Fabrication at MSFC/Votaw
- Anticipated Delivery: 9/17

Support structures (3 – 1 for B2, 1 for RATF, 1 for transportation):
- B2 support structure design complete
 - Fabrication in progress @ GRC
 - Anticipated Delivery: 9/17
- Transportation Support Stand
 - Anticipated Delivery: 2/18
- RATF Support Stand
 - Initial requirements evaluated
 - Design not started
 - Anticipated Delivery: 2/18
Predicted Benefits from Heat Intercept Technology

The graph illustrates the predicted heat load in kilowatts (kW) for different configurations of heat intercept technology. The configurations include:

- **No VC**
 - SOFI only
 - SOFI + MLI on tank domes only

- **VC**
 - SOFI + MLI on tank and skirt

The bars are color-coded as follows:

- AFT skirt
- FWD skirt
- MLI
- SOFI

Heat Load, kW

<table>
<thead>
<tr>
<th>Configuration</th>
<th>SOFI only</th>
<th>SOFI + MLI on tank domes only</th>
<th>SOFI + MLI on tank and skirt</th>
</tr>
</thead>
<tbody>
<tr>
<td>No VC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hardware & Testing

SHIIVER Tank During Cold Shock

Machining Tank Flanges
TEST PLAN
SHIIVER Instrumentation

• **Temperature**
 – 190 silicon diodes ordered and delivered in FY16
 • +/- 0.1 K: 4 K < T < 30 K
 • +/- 0.5 K: 30 K < T < 400 K
 – Ordered with ~13 ft leads to minimize extensions needed
 – Locations for 146 assigned diodes on test system have been identified and assigned by SN to P&ID

• **Liquid Level**
 – Capacitance probe ordered and delivered in FY16
 – RFMG installed to demonstrate scaling of hardware
 – Will also have diode rake every 5%

• **Heat Flux Sensors**
 – Heat flux sensors have been identified and purchased for comparative testing
 – Calibration to 20 K this summer

• **Accelerometers**
 – Accelerometers ordered and delivered in FY16
 – Locations still being worked by SHIIVER team

• **Boil-off and Vapor flow**
 – Flow meters have been identified and ordered
 – Covers range of expected heat loads on SHIIVER

• **Pressure**
 – Pressure transducers have been spec’d and identified
 – Quantity and locations on P&ID identified
 – Procurement and placement in B2 in progress
Tank & SOFI

- Tank wall sensor, temperature
- SOFI surface sensor, temp
- Heat Flux Sensor

See FWD Skirt

Also on tank backside
FWD Skirt/Vapor Cooling Temperatures

- FWD skirt sensor, temperature
Test Plan

Testing split into four distinct categories

– Baseline Testing:
 • Show system performance with SOFI only (sprayed to EUS dimensions and tolerances)
 • Demonstrate vapor cooling performance benefits with SOFI only

– Pre-Acoustic Testing:
 • Demonstrate performance benefits with MLI compared to baseline
 • Demonstrate vapor cooling performance benefits in conjunction with MLI

– Acoustic Testing:
 • Demonstrate that MLI survives SLS/EUS anticipated acoustic loads
 • Demonstrate that MLI survives transportation between facilities

– Post-Acoustic Testing:
 • Demonstrate performance losses due to acoustic loads on MLI system
Tests required to meet KPPs:
- Insulation performance at 90% full
- Vapor cooling performance at 50% full

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Vapor Cooling (On/Off)</th>
<th>Liquid Level (%)</th>
<th>Curtain (Up/Down)</th>
<th>Baseline Testing (SOFI)</th>
<th>Pre-Acoustic Testing</th>
<th>Post-Acoustic Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill of warm tank (in Vacuum)</td>
<td>Off</td>
<td>0 – 90</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Boil-off/Heat Load High Fill</td>
<td>Off</td>
<td>90</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Boil-off/Heat Load Med Fill</td>
<td>Off</td>
<td>50</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vapor Cooling max flow</td>
<td>On</td>
<td>50</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vapor Cooling – Nominal</td>
<td>On (partial flow)</td>
<td>50</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td>?</td>
</tr>
</tbody>
</table>
Thermal Vacuum Testing Priorities - Needed

Without these tests SHIIVER may be programmatically successful, but leave infusion targets partially satisfied.

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Vapor Cooling (On/Off)</th>
<th>Liquid Level (%)</th>
<th>Curtain (Up/Down)</th>
<th>Baseline Testing (SOFI)</th>
<th>Pre-Acoustic Testing</th>
<th>Post-Acoustic Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boil-off/Heat Load High Fill w/curtain</td>
<td>Off</td>
<td>90</td>
<td>Down</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vapor Cooling/High fill</td>
<td>On</td>
<td>90</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pressure Rise, High Fill</td>
<td>Off</td>
<td>90</td>
<td>Up</td>
<td>?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vapor Cooling-Nominal/Curt</td>
<td>On</td>
<td>50</td>
<td>Down</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Transient Vapor Cooling</td>
<td>On</td>
<td>70</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Transient No Vapor Cooling</td>
<td>Off</td>
<td>70</td>
<td>Up</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fill of warm tank (in Vacuum) with cooling</td>
<td>On (partial flow)</td>
<td>0 – 90</td>
<td>Up</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Thermal Vacuum Testing Priorities - Other

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Vapor Cooling (On/Off)</th>
<th>Liquid Level (%)</th>
<th>Curtain (Up/Down)</th>
<th>Baseline Testing (SOFI)</th>
<th>Pre-Acoustic Testing</th>
<th>Post-Acoustic Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycling Flow</td>
<td>On</td>
<td>50</td>
<td>Up</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Boil-off Low Fill</td>
<td>Off</td>
<td>25</td>
<td>Up</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Vapor Cooling – Low Fill</td>
<td>On</td>
<td>25</td>
<td>Up</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Acoustic Test Matrix

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Profile</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch</td>
<td>EUS</td>
<td>40 s</td>
</tr>
<tr>
<td>Aero acoustics</td>
<td>EUS</td>
<td>20 s</td>
</tr>
</tbody>
</table>
SHIIVER Conclusions

- The SHIIVER test articles are making progress in development including the beginning of fabrication
- Performance goals and targets are show with projected performance meeting all performance goals
- A prioritized test matrix is laid out to meet all project and performance needs
- Testing should begin in late 2018