We present the results of single event effects (SEE) testing and analysis investigating the effects of radiation on electronics. This paper is a summary of test results.

Test Techniques and Setup

A. Test Indications
- Single event functional interrupts (SEFI)
- Pixel artifacts
- Catastrophic failures

B. Test Setup
- Single event effects (SEE)
- Ground-based testing
- Candidate spacecraft electronics
- Single event burnout (SEB)
- Single event transient (SET)
- Radiation environment

C. Test Facilities
- University Cyclotron Facility

D. Test Conditions
- Flux: 1x10^7 to 1x10^9 p+/cm^2-
- Particles/cm^2
- Let: 1.84

E. Test Duration
- 24kHz output frequency
- No more than 100x lens

Test Results Overview

Table V: Summary of SEE Test Results

<table>
<thead>
<tr>
<th>Device</th>
<th>Die Size</th>
<th>Voltage</th>
<th>Current</th>
<th>Capacity</th>
<th>Efect</th>
<th>LET (T)</th>
<th>LET (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

[20] University Cyclotron Facility. As of the publication of this paper, the facilities are commercially available.

Acknowledgment

This work was supported in part by the NASA Electronics Parts and Packaging (EPP) program, and ON Semiconductor. The authors gratefully acknowledge reviews of the Radiation Effects Data Workshop (REDW) by Drs. Vicente, De Vore, and Winter. Special thanks to our team members at JPL, specifically Mr. B. Buhler and Dr. M. Suhaila, for their essential support of the test planning and execution.