Status of Dynamic Power Convertor Development for RPS at NASA GRC

Sal Oriti and Scott Wilson
NASA Glenn Research Center, Cleveland, OH

May 3, 2018
IAPG Mechanical Working Group Meeting
Dynamic Conversion Power System Background

Advantages:
- Higher efficiency, less waste heat for spacecraft
- Low generator power decline (fuel decay only)
- Large multi-mission generator design space
- Extensible to high power levels

SRG-110
- ~114 W_e output
- Infinia’s Technology Demonstration Convertor (TDC)
- 2 GPHS modules
- Overall efficiency = 23%
- 4.2 W_e/kg (before engineering unit build)
- Developed during 2001 to 2006 timeframe

ASRG
- ~140 W_e output
- Sunpower’s Advanced Stirling Convertor (ASC)
- 2 GPHS modules
- Overall efficiency = 28%
- 4.4 W_e/kg
- Developed during 2006 to 2013 timeframe
Key Convertor Performance Goals

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life</td>
<td>20 years</td>
</tr>
<tr>
<td>Efficiency</td>
<td>$\geq 24%$ at $T_{\text{cold}} > 100 , ^\circ\text{C}$</td>
</tr>
<tr>
<td>Specific Power</td>
<td>$20 , \text{W}_e/\text{kg}$ (convertor only)</td>
</tr>
<tr>
<td>Partial power</td>
<td>Can be throttled down to 50%</td>
</tr>
<tr>
<td>Degradation</td>
<td>$< 0.5% / \text{year}$</td>
</tr>
<tr>
<td>Hot-End Temp</td>
<td>$< 1000 ^\circ\text{C}$</td>
</tr>
<tr>
<td>Cold-End Temp</td>
<td>20 to 175 $^\circ\text{C}$</td>
</tr>
<tr>
<td>Random Vibe</td>
<td>Launch qual</td>
</tr>
<tr>
<td>Static Accel</td>
<td>20g for 1 minute, 5g for 5 days</td>
</tr>
<tr>
<td>Radiation</td>
<td>300 krad</td>
</tr>
<tr>
<td>Size</td>
<td>Enables generator that can fit in DOE shipping container</td>
</tr>
</tbody>
</table>

Robustness goals also defined:
- Design has margin to tolerate events outside expected environments
- Fewer single-point-failures is more robust
- Tolerant of loss of electrical load
- Tolerant of operational error
- Manufacturability not dependent on specialized workmanship

Multi-Mission Capable:
- Mars
- Titan
- Moon
- Europa
- Deep Space
Convertor Development Timeline

- RFP via Research Opportunities in Space and Earth Sciences (ROSES-2016), August 2016
- Received 14 proposals, encompassing multiple dynamic conversion methods
- 4 contracts awarded in FY2017:

<table>
<thead>
<tr>
<th>Contractor</th>
<th>Convertor Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Super Conductor</td>
<td>Flexure Isotope Stirling Convertor (FISC)</td>
</tr>
<tr>
<td>Creare, LLC</td>
<td>Turbo-Brayton Convertor (TBC)</td>
</tr>
<tr>
<td>Northrop Grumman Aerospace Systems</td>
<td>Thermo-Acoustic Power Convertor (TAPC)</td>
</tr>
<tr>
<td>Sunpower, Inc.</td>
<td>Sunpower Robust Stirling Convertor (SRSC)</td>
</tr>
</tbody>
</table>

- Contracts consist of up to 3 Phases:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Duration</th>
<th>Work Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 months</td>
<td>Design</td>
</tr>
<tr>
<td>2</td>
<td>18 months</td>
<td>Prototype Fabrication Performance Demonstration</td>
</tr>
<tr>
<td>3</td>
<td>12 months</td>
<td>IV&V Test Support</td>
</tr>
</tbody>
</table>

Decision Gate 1

Decision Gate 2

Flight Development

New Frontiers 5 AO

NASA Contracts

DOE Contract + NASA Partnership
Flexure Isotope Stirling Convertor (FISC)
American SuperConductor (AMSC), formerly Infinia Tech Corp.

- Flexure-bearings, beta arrangement free-piston Stirling conv.
- Derivative of Technology Demonstration Convertor (TDC) from a 1990’s SBIR and SRG-110 project
- Design deltas relative to TDC to improve the following:
 1. Higher radial stiffness flexures, overstroke tolerance, hot-end temperature margin
 2. Independently verifiable subassemblies
 3. Higher efficiency alternator, higher cold-end temp capability
 4. System integration : Tailored interfaces

Convertor Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-end Temp</td>
<td>650 °C</td>
</tr>
<tr>
<td>Cold-end Temp</td>
<td>20 to 175 °C</td>
</tr>
<tr>
<td>Efficiency</td>
<td>31% @ T_{COLD}=100°C</td>
</tr>
<tr>
<td>Power Output</td>
<td>70 W_{ac}</td>
</tr>
<tr>
<td>Mass</td>
<td>3.3 kg (>20W_{e}/kg)</td>
</tr>
</tbody>
</table>

Status:
Decision Gate 1 successfully passed
Phase 2 awarded, April 2018
Turbo-Brayton Convertor (TBC)

Creare, LLC

Closed Brayton continuous flow cycle with recuperation
- Scaled-down from previous designs
- Leverages heritage from Creare’s HST NICMOS cooler
- Two counter-rotating units permits redundancy, and nullifies angular momentum

TBC Performance

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine Inlet Temp (Hot End)</td>
<td>730 °C</td>
</tr>
<tr>
<td>Compressor Inlet Temp (Cold End)</td>
<td>20 to 175 °C</td>
</tr>
<tr>
<td>Efficiency</td>
<td>26% @ T_{COLD}=100°C</td>
</tr>
<tr>
<td>Power Output</td>
<td>355 W_{ac}</td>
</tr>
<tr>
<td>Mass</td>
<td>15.5 kg (>20W_{ac}/kg)</td>
</tr>
</tbody>
</table>

- Notional 355 W_{e} generator concept with 100% convertor redundancy

Status:
Decision Gate 1 successfully passed
Phase 2 awarded, April 2018
Thermo-Acoustic Power Convertor (TAPC)

Northrop Grumman Aerospace Systems

- Thermoacoustic Stirling cycle
- Eliminates physical displacer (no moving parts in hot end)
- Natively balanced, dual-opposed alternator building block
- Alternators driven by shared compression space
- Based on previous development efforts: 2003 NRA, IRAD-developed device

TAPC Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-end Temp</td>
<td>700°C</td>
</tr>
<tr>
<td>Cold-end Temp</td>
<td>20 to 175 °C</td>
</tr>
<tr>
<td>Efficiency</td>
<td>26% @ $T_{\text{COLD}}=100°C$</td>
</tr>
<tr>
<td>Power Output</td>
<td>110 W$_{\text{ac}}$</td>
</tr>
<tr>
<td>Mass</td>
<td>6.4 kg (< 20 W$_{\text{e}}$/kg)*</td>
</tr>
</tbody>
</table>

*Options being explored to reduce convertor mass to meet W/kg target

Notional 220 W$_{\text{e}}$ generator concept with 100% convertor redundancy

Status:

Phase 1 Design Review Completed, April 2018

Phase 2 award pending gov’t decision
Sunpower Robust Stirling Convertor (SRSC)
Sunpower, Inc.

- Gas-bearing based, beta arrangement free-piston Stirling
- Derivative of Advanced Stirling Convertor (ASC) from ASRG Project
- Enables wide generator design space
- Design deltas relative to ASC to improve the following:
 1. Higher radial gas bearing stiffness, overstroke tolerance, regenerator robustness, debris tolerance
 2. Higher cold-end temp capability, static acceleration

SRSC Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-end Temp</td>
<td>720°C</td>
</tr>
<tr>
<td>Cold-end Temp</td>
<td>20 to 175 °C</td>
</tr>
<tr>
<td>Efficiency</td>
<td>29% @ T_{COLD}=100°C</td>
</tr>
<tr>
<td>Power Output</td>
<td>65 W_{ac}</td>
</tr>
<tr>
<td>Mass</td>
<td>2.0 kg (> 20 W_e/kg)</td>
</tr>
</tbody>
</table>

Notional 500 W_e generator concept with 25% convertor redundancy

Hot End ☰ Cold End ☰ Alternator

Status:
Phase 1 Design Review Completed, April 2018
Phase 2 award pending gov’t decision
Path to Flight

Goal:
Achieve convertor TRL 6, then initiate generator flight development

NASA definition of TRL 6: “System/subsystem model or prototype demonstration in a relevant environment (ground or space)”

Surrogate Mission Team (SMT), chartered by RPS Program

- NASA, DOE, JPL, APL, GSFC
- Formulated requirements to provide mission pull
- Integrated with DPC contract progress monitoring
- Formulated a TRL evaluation method
- Providing failure mode and probability of success analysis
- Work phases and deliverables tied to TRL advancement

Phase 1 : Design
- Preliminary DPC design
- Power, thermal, structural analyses
- FMEA
- Req. compliance matrix
- Design review

Phase 2 : DPC Fab and Test
- Demonstrate steady-state perf.
- Performance mapping
- Initial extended operation
- Validate physics-based models

Phase 3 : IV&V
- Independent modeling and analysis
- Launch vibration exposure
- Static acceleration exposure
- Performance mapping
- Half-power operation
- Durability/robustness tests
- Extended operation

Gate 1
Many convertors from SRG110 and ASRG projects are still undergoing continuous operation today.

<table>
<thead>
<tr>
<th>Project & Provider</th>
<th>Test Article</th>
<th>Years of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRG 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infinia, Corp.</td>
<td>TDC #13</td>
<td>12.6(^1)</td>
</tr>
<tr>
<td></td>
<td>TDC #15</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>TDC #16</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>SES #2</td>
<td>0.3</td>
</tr>
<tr>
<td>ASRG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunpower, Inc.</td>
<td>ASC-0 #3(^2)</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>ASC-E3 #4(^2)</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>ASC-E3 #6(^2)</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>ASC-E3 #9</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>ASC-E3 #8</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>ASC-L(^2)</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Cumulative Per-Convertor Runtime as of May 2018

1Current record-holder for maintenance-free heat engine
2Have undergone random vibe portion of life certification

TDC #13 and #14 performance data over six year period

<table>
<thead>
<tr>
<th>Date</th>
<th>Nov 20, 2010</th>
<th>Aug 30, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDC #13</td>
<td>65.4 W</td>
<td>65.4 W</td>
</tr>
<tr>
<td>TDC #14</td>
<td>64.5 W</td>
<td>64.5 W</td>
</tr>
</tbody>
</table>

ASC-E3 Pair Extended Operation Test Article
TDC #14 Disassembly and Inspection

Encouraging results from TDC #14 inspection
105,620 hrs of operation = 12 years, 31 billion cycles
Further disassembly is planned

- No sign of flexure degradation
- Signs of oxidation on expected surfaces – likely from early non-hermetic operation
- Geometric stability verified via Coordinate Measuring Machine (CMM)
- Evidence of oxide residue/dust in various areas – did not degrade operation

TDC #14 displacer after 12 years of operation

TDC #14 aft flexure stack after 12 years of operation

TDC #14 piston after 12 years of operation
Launch Vibration Exposure on SES #2

- 10.35 g_{rms} profile formulated by SMT, encompasses wide span of launch vehicles
- 2 min duration at full random vibe level
- Temporary reduction in power output during lateral axes exposures (expected)
- SES #2 now operating continuously at full power, 2900 hrs accumulated
- Static acceleration exposure test up to 20g recently performed

Engineering Unit convertor from SRG-110 project successfully passed launch simulation while operating

SES #2 undergoing launch vibration exposure

Centrifuge facility for static acceleration tests (Case Western Reserve University)
Conclusions

NASA’s dynamic power convertor development in support of high-efficiency RPS is progressing as planned, and shows promise

• 2 DPC contracts have passed Decision Gate 1, and have been awarded Phase 2 (convertor prototype fabrication and test)
• 2 DPC contracts have completed Phase 1 reviews
• NASA GRC is preparing for DPC prototype IV&V, ~2020
• Ongoing research utilizing existing hardware supports viability of dynamic power conversion for RPS