Investigation of Multi-Input, Multi-Output (MIMO) Random Control Applied to Direct Field Acoustic Testing

Adam Johnson, Robert Lawson
Quartus Engineering Inc., San Diego, CA

Vince Fogt, Ken Fiorelli
NASA Johnson Space Center, Houston, TX

Paul Bremner
AeroHydroPLUS, Del Mar CA
Outline

• **Motivation**
 • DFAT versus Reverb Test results
 • MIMO Control Theory
 • Numerical Simulation of DFA Test
 • Alternative DFAT & MIMO Control Configurations
 • What we learned
Qualification of Direct Field Acoustic Testing for NASA Manned Space Missions

Reverberant Chamber Testing

Direct Field Acoustic Testing (DFAT)

\[G_{pp}(x, x'; \omega) = \left(G_{pp}(\omega) \right) \frac{\sin(k_0 |x - x'|)}{k_0 \|x - x'\|} \]
Vibration response under random acoustic loading

- **FE / BEM**

\[
G_{vv}(x, \omega) = \sum_r \frac{\omega^4 \psi_r^2(x) S_{ff,r}(\omega)}{g^2 m_r^2 \left(\frac{\omega_r^2}{1 + j \eta_r} - \omega^2\right)^2}
\]

\[
S_{ff,r}(\omega) = \iint_A \psi_r(x) G_{pp}(x, x'; \omega) \psi'_r(x') dx dx'
\]

\[
S_{ff,r}^{REV}(\omega) = \left\langle G_{pp}(\omega) \right\rangle \int_A \psi_r(x) \frac{\sin k_0 |\Delta x|}{k_0 |\Delta x|} \psi'_r(x') dx dx'
\]

\[
= \left\langle G_{pp}(\omega) \right\rangle j_r^2(\omega)
\]

- **SEA**

\[
\left\langle G_{vw,\Delta \omega} \right\rangle = \frac{\omega \pi A^2}{2 g^2 m^2 \eta_{\Delta \omega}} n_{\Delta \omega} \left\langle G_{pp,\Delta \omega} \right\rangle \bar{j}_{\Delta \omega}^2
\]

\[
g^2 / Hz
\]
DFAT vs Reverberation Chamber Testing: Qualification Metrics

SOUND PRESSURE

1. Third octave, RMS spectrum level ± 3 dB
2. Spatial uniformity ± 2 dB
3. Spatial correlation TBD

SPACECRAFT VIBRATION

4. Third octave, RMS spectrum level ± 3 dB
Outline

• Motivation
• **DFAT versus Reverb Test results**
• MIMO Control Theory
• Numerical Simulation of DFA Test
• Alternative DFAT & MIMO Control Configurations
• What we learned
Test Results - Acoustic field
DFAT SPL versus Test Spec.

Typical RESPONSE Mic.

Typical CONTROL Mic.
Test Results – **Spacecraft Vibration**

Reverb Chamber versus DFAT

Spacecraft Structure – Sample Normalized Vibration Response

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 dB/div</td>
</tr>
</tbody>
</table>

- **Reverb**
- **DFAT**
Test Results – Spatial Correlation
Reverb. Chamber versus DFAT

Reverberation Chamber Test

\[\gamma_{DAF,3D}^2 = \frac{|G_{pp}(x, x'; \omega)|^2}{G_{pp}(x, \omega) G_{pp}(x', \omega)} \]

= \left[\frac{\sin(k_0 |\Delta x|)}{k_0 |\Delta x|} \right]^2

Direct Field Acoustic Test
Outline

• Motivation
• DFAT versus Reverb Test results
• **MIMO Control Theory**
• Numerical Simulation of DFA Test
• Alternative DFAT & MIMO Control Configurations
• What we learned
MIMO Random Control Theory

- Wave6 BEM solves for deterministic frequency response between input voltage (velocity) and output sound pressure

\[
\begin{bmatrix}
 p_1 \\
 p_2 \\
 \vdots \\
 p_r
\end{bmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & \cdots & h_{1m} \\
 h_{21} & h_{22} & \cdots & h_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{r1} & h_{r2} & \cdots & h_{rm}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_m
\end{bmatrix}
\]

\(p = Hv \) \hspace{1cm} \text{(Eq. 1)}

- Random drive signals result in random pressures which can only be quantified statistically - autospectrum \(G_{pp} \), coherence \(\gamma^2_{ij} \), and phase \(\varphi_{ij} \) depends on:
 - BOTH cross spectrum of input voltages (velocities) AND frequency response functions

\[
G_{pp} = E[p p^T] = E[Hv (Hv)^T] = H G_{vv} H^T
\]

\(G_{pp} = \begin{bmatrix}
 G_{11}(j\omega) & G_{12}(j\omega) & \cdots & G_{1n}(j\omega) \\
 G_{21}(j\omega) & G_{22}(j\omega) & \cdots & G_{2n}(j\omega) \\
 \vdots & \vdots & \ddots & \vdots \\
 G_{r1}(j\omega) & G_{r2}(j\omega) & \cdots & G_{rn}(j\omega)
\end{bmatrix} \hspace{1cm} \text{(Eq. 2)}
MIMO Random Control
for Diffuse Acoustic Field - I

- For DAF we can fully define the required $G_{pp}(j\omega)$ pressure cross spectrum matrix

$$G_{pp}(j\omega) = \begin{bmatrix} 1 & \gamma_{12}^2(j\omega) & \cdots & \gamma_{1s}^2(j\omega) \\ \gamma_{21}^2(j\omega) & 1 & \cdots & \gamma_{2s}^2(j\omega) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{s1}^2(j\omega) & \gamma_{s2}^2(j\omega) & \cdots & 1 \end{bmatrix}$$

(Eq. 3)

$$\gamma_{rs}^2(x_r, x_s, \omega) = \frac{\sin(k_0|x_r - x_s|)}{k_0|x_r - x_s|}$$

- And use inverse of the wave6 frequency response function matrix $H_{rm}(j\omega)$ to define the required cross spectrum of input voltages (velocities)

$$G_{vv} = H^{-1} G_{pp} \left(H^{*T}\right)^{-1}$$

(Eq. 2.1)
• HOWEVER for certain physical configurations of audio sources and control microphones it may be physically impossible for the frequency response functions to support the mixing of response pressures required to achieve a DAF; viz

- In which case, the H matrix may be singular (not invertible)

• Physically, this means that some *impossibly large drive voltages* would be required to achieve the specified DAF
Furthermore, a MIMO controller can utilize a **rectangular control** strategy.

Outputs > # Inputs, therefore there is no “exact” solution

\[\| H G_v v H^* T - G_{pp} \| \neq 0 \]

… the result is a “least squares” solution

\[G_v v = H^+ g_{pp} (H^* T)^+ \]

Where the pseudoinverse is derived from SVD of H

\[H = U W V^T \quad \Rightarrow \quad H^+ = V^T W^{-1} U \]

\[= (H^T H)^{-1} H^T \]

\[G_v v = (H^T H)^{-1} H^T g_{pp} H^* (H^* H^* T)^{-1} \]
Outline

• Motivation
• DFAT versus Reverb Test results
• MIMO Control Theory
• **Numerical Simulation of DFA Test**
• Alternative DFAT & MIMO Control Configurations
• What we learned
eSTA DFAT Experimental Data

- Experimental data shows axial cross spectra does not approach Diffuse Acoustic Field

Test Data Spatial Coherence

Vertical stacks have the same input along the entire height which inhibits axial decoupling.
BEM Scattering Simulation

- Scattering simulations include the effects of sound reflecting off of spacecraft and speaker surfaces

Frequency Response Function Evaluation

\[
\begin{bmatrix}
 p_1 \\
 p_2 \\
 \vdots \\
 p_r
\end{bmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & \cdots & h_{1m} \\
 h_{21} & h_{22} & \cdots & h_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{r1} & h_{r2} & \cdots & h_{rm}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_m
\end{bmatrix}
\]

\[
p = Hv
\]

- FRFs are evaluated one speaker at a time
- FRFs include effects of sound bouncing off remaining geometry
BEM Direct Field Simulation

- Direct field simulations assume that effects of scattering are negligible with respect to direct speaker output.

Frequency Response Function Evaluation

\[
\begin{bmatrix}
 p_1 \\
 p_2 \\
 \vdots \\
 p_r
\end{bmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & \cdots & h_{1m} \\
 h_{21} & h_{22} & \cdots & h_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 h_{r1} & h_{r2} & \cdots & h_{rm}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_m
\end{bmatrix}
\]

\[p = Hv\]

- **FRFs are evaluated one speaker at a time.**
- **FRFs neglect effects of sound bouncing off remaining geometry.**
BEM Simulation versus Test
DFAT Spatial Correlation

Scattering Simulation

Direct Field Simulation

Output Azimuthal Vs Axial Spatial Coherence

Average Spatial Coherence

Non-dimensional Frequency
Outline

• Motivation
• DFAT versus Reverb Test results
• MIMO Control Theory
• Numerical Simulation of DFA Test
• **Alternative DFAT & MIMO Control Configurations**
• What we learned
Split Simulation

- Dividing the speakers into 2 partitions (vertically)

Split 2 Configuration

All 15 stacks, split vertically into halves (Up to 30 independent inputs)
Random Uncontrolled Input—Spatial Coherence

No Split

Split 2 configuration reduced axial coherence as predicted
Random Uncontrolled Input– Spatial Coherence

Split 2 configuration reduced axial coherence as predicted
Split 2 – Alternate Input Configuration
Random Uncontrolled Input

- Reduce independent inputs from 30 to 15:
 - 15 independent inputs
 - Independent inputs are not vertically adjacent

Reducing the number of independent inputs does not significantly affect the cross spectrum results
15 X 15 Control Simulation

\[G_{vv} = H^{-1} G_{pp} \left(H^T \right)^{-1} \]

Control mics are diffuse, but response mics are not

Control mics meet SPL requirement, but response mics are significantly louder
G_{vv} = (H^T H)^{-1} H^T G_{pp} H^* (H^* H^T)^{-1}

Control mics and response mics are an approximation of DAF

Control mics and response mics are within 3 dB of test spec SPL
Outline

- Motivation
- DFAT versus Reverb Test results
- MIMO Control Theory
- Numerical Simulation of DFA Test
- Alternative DFAT & MIMO Control Configurations
- **What we learned**
What we learned

1. MIMO Random Control can achieve “Ideal DAF” but only at control mics
 - NOT at other locations; leading to spatial non-uniformity (up to +10 dB over drive)
 - Controller target $G_{pp}(j\omega)$ should be based on in-situ measured (scattered) cross spectrum with multiple statistically independent inputs

2. Numerical (BEM) simulation can predict non-DAF spatial correlation of complex, full scale test configurations

3. Simulations indicate DFAT vertical spatial correlation can be improved by:
 - Vertical split of loudspeaker banks
 - Rectangular (vs square) MIMO random control
Questions ?