NASA Chemical Propulsion
In-Space

Rocket Propulsion for the 21st Century (RP21)
Spring Meeting

Daniel Cavender, Mary Koelbl, Tom Brown
May 15-16, 2018
The Chemical Propulsion Sub-capability Management Forum is responsible for all chemical propulsion for the Agency, boost and in-space.

Goals and Objectives
- Utilize the propulsion workforce from an Agency perspective
- Increase mutual dependencies, avoid costs, create efficiencies, and align workforce to center roles

In-Space chemical propulsion focused on working today’s projects with a vision of the in-space chemical propulsion of tomorrow.

Yesterday
- Storable in-space prop for science and HSF
- Slow evolution of CFM component technologies for in-space use

Today
- Storable hypergols for in-space propulsion
- Development of SLS/Orion for beyond LEO
- Investigating Low Cost NTP with LEU fuel
- Green Propellant Systems – Advanced Dev.
- Integrating CFM technologies to demonstrate viability of in-space cryo propellant systems
- Hybrids for Ascent systems
- Long Lifetime/Extreme Env. Solid Rocket Motors

Tomorrow
- Cryogenic In-space Prop (LOX/CH4)
- Descent/Ascent Lander engines and systems
- Use of ISRU produced propellants
- SLS Operations & Orion Operations
- NTP Engine & System Development
- Green Propellant Systems
- Advanced Chem for Science Missions
- Traditional Chem for Science Missions
Development of SLS/Orion → SLS/Orion Operations In-Space

- On-going to deliver SLS for EM-1 while proceeding with the design of SLS EUS for crewed / longer duration missions

- Orion with heritage engine hardware evolves to new engine procurement and assessment of parallel propulsion architecture

- Propulsion workforce from six NASA centers
 - MSFC, JSC/White Sands, GRC, LaRC, SSC and KSC

Investigate Low Cost NTP → NTP Engine & System Development

- STMD funded effort to assess integrated engine / reactor system and potential ground test options

- Propulsion workforce from three NASA centers
 - MSFC, GRC, SSC
CFM technologies → Cryogenic In-Space Systems

- STMD roadmap developed with focus on technologies needed for NTP, In-Space Methane Stage and Lander / Ascent Vehicle
 - Roadmap delineated technologies that required flight from those that benefit from large scale ground test to focus investments
 - Planned testing of Shiver (large scale ground test)

- Propulsion workforce from three NASA centers
 - MSFC, GRC, JSC

Hypergol Ascent Stage → Descent / Ascent / Deorbit Stages

- Many efforts on-going including SMD funded MAV and Europa Projects, HEOMD funded Lander Technologies
 - Working in solid, liquid, and hybrid propulsion

- Propulsion workforce from five NASA centers
 - MSFC, GSFC, JPL, JSC, and GRC
Green Prop Adv Development → Industry Leveraged Systems

- Chemical Propulsion Sub-capability Management forum chartered a Green Propulsion Working Group to focus the efforts for the Agency
 - Efforts were distributed and overlapping
 - Needed focus for future investments
 - Needed assessment of mission pull and strategy

- Three NASA centers involved, MSFC, GSFC and GRC
Green Propulsion Outline

• Green Propulsion Working Group
 – Purpose & Role
 – Representation & Community
 – Focus, Products, & Leadership

• NASA Green Prop Roadmap
 – Goals & Vision
 – Technology Development Areas (TDAs)
 – Strategy & Partnerships

• Missions, Projects, & Activities
 – Flight: GPIM & Lunar Flashlight
 – Ground: Aerojet Rocketdyne, Busek, Orbital ATK
 – IRAD: Propellants, Components, Tools, Range Access, Studies

What we are doing ‘Today’ to get us to the ‘Tomorrow’
• Created by NASA Chem Prop Sub-capability Management (CPSM)

• Purpose:
 – Develop & Maintain the NASA Green Propulsion Roadmap,
 – Identify Green Propulsion (GP) Technology Development Areas (TDAs),
 – Establish Strategy & Vision for address GP TDAs,
 – Track efforts to address TDAs pursued by NASA Centers, other Agencies, industry, & academia, and
 – Identify & Maintain assessment of GP test facilities & competencies related to green propulsion for NASA.

• Role:
 – Advisory group to the CPSM on In Space Green Propulsion
 – Institutional knowledge source for agency & partners
 – Advocacy for Green Propulsion Technology
 – Work across center, agency, & industry lines to achieve goals
Green Propulsion Working Group (GPWG)

• Representation:
 – Marshall Space Flight Center
 – Glenn Research Center
 – Goddard Space Flight Center
 – Ames Research Center
 – Jet Propulsion Laboratory

• Community:
 – Government:
 • Air Force Research Laboratory (AFRL)
 • Naval Air Warfare Center (NAWC)
 • Missile Defense Agency (MDA)
 • Sandia National Laboratory (SNL)
 – Academia:
 • Kent State University
 • MIT
 • Purdue University
 – Industry:
 • Aerojet Rocketdyne
 • AMA
 • Busek Company
 • ECAPS
 • Orbital ATK
 • Plasma Processes
 • VACCO Industries
Green Propulsion Working Group (GPWG)

- **Focus:**
 - Ionic liquid propellants & related technologies seen as direct or near-direct replacements for hydrazine monoprop or hypergolic bi-props

- **Products:**
 - NASA Green Propulsion Roadmap

- **Leadership:**
 - Pulling Teams together for Studies
 - AF-M315E Surface Tension Study
 - LMP-103S ADN Desolvation & Resolvation Rates
 - Green Propellant Use on ISS (NASA NESC - JAXA)
 - Engaging Agencies, Industry, & Academia
 - Green Prop Payload & Flight Opportunities TIM
 - ACO, SBIR, CAN, IA, SAA
 - Growing influence & participation in GPWG
Goals & Vision:

Goal 1: Establish Agency Vision for Green Propulsion

- Focuses upon a step-wise plan to systematically advance the state-of-the-art with each step contributing to the next while simultaneously providing for the greatest return on investment.

Goal 2: Provide Guidance to Focus Energies & Resources

- Identify NASA capabilities & provide recommendations to the best utilization of those capabilities.
- Advise on new capabilities
- Work to provide guidance to MDs, POs, Centers, projects, & NASA investments to best utilize the resources available

Goal 3: Knowledge Archiving, Distribution, and Utilization

- Ensure that the largest audience permissible has access to the wealth of knowledge, & minimizing duplicative efforts, poor performance, and/or wasted resources
Technology Development Areas (TDAs):

- TDA 1.1: Improve Propellant Throughput
- TDA 1.2: Reduce Ignition Power Requirements
- TDA 1.3: Supporting Hardware
- TDA 1.4: Manufacturing Techniques & Cost
- TDA 2.1: Plume Models
- TDA 2.2: Catalytic Decomposition Chemistry
- TDA 2.3: Transient Thermal Analysis
- TDA 2.4: Propellant Performance Modeling
- TDA 3.1: System Material Compatibility Database
- TDA 3.2: Green Propulsion ‘MAPTIS’ Database
- TDA 3.3: Radiation Flux Impacts
- TDA 4.1: Propellant Supply Base
- TDA 4.2: Propellant Properties
- TDA 4.3: New Propellant Formulations
- TDA 4.4: Alternative Applications
• TDA-1: Thruster Hardware Development:
 – TDA-1.1: Improve Propellant Throughput (near-term)
 – TDA-1.2: Reduce Ignition Power Requirements (near-term)
 – TDA-1.3: Supporting Hardware (near to mid-term)
 – TDA-1.4: Manufacturing Techniques & Cost (mid-term)

• TDA-02: Modelling & Tools Development
 – TDA-2.1: Plume Models (near-term)
 – TDA-2.2: Catalytics & Decomposition Chemistry (near-term)
 – TDA-2.3: Transient Thermal Analysis (near-term)
 – TDA-2.4: Propellant performance modeling (mid to long-term)
• TDA-03: Materials Properties & Compatibility:
 – **TDA-3.1:** Identify and increase system material compatibility database, including compatible soft-goods (e.g. seals, bladders, etc.) (near to mid-term)
 – **TDA-3.2:** Generate a green propulsion database, such as inclusion of data into NASA’s Materials And Processes Technical Information System (MAPTIS) database (mid-term)
 – **TDA-3.3:** Identify impacts of high radiation flux onto system components (long-term)

• TDA-04: Propellant Development:
 – **TDA-4.1:** Propellant Supply Base (near-term)
 – **TDA-4.2:** Propellant Properties (near to mid-term)
 – **TDA-4.3:** New Propellant Formulas (mid to long-term)
 – **TDA-4.4:** Alternate Applications (long-term)
Strategy:

- Near-Term
- Mid-Term
- Long-Term
NASA Green Prop Roadmap

- **Strategy:**

<table>
<thead>
<tr>
<th>Priority</th>
<th>Near-Term</th>
<th>Mid-Term</th>
<th>Long-Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeframe</td>
<td>Next 5 Years</td>
<td>5 - 10 Years</td>
<td>10 - 15 Years</td>
</tr>
<tr>
<td>Thrust Class Target</td>
<td>Up to 22N</td>
<td>Up to 110N</td>
<td>Up to 440N & Alt. Applications</td>
</tr>
<tr>
<td>Technology Development Areas (TDAs)</td>
<td>TDA-1.1</td>
<td>TDA-1.4</td>
<td>TDA-2.4</td>
</tr>
<tr>
<td></td>
<td>TDA-1.2</td>
<td>TDA-3.2</td>
<td>TDA-3.3</td>
</tr>
<tr>
<td></td>
<td>TDA-1.3</td>
<td>TDA-4.2</td>
<td>TDA-4.3</td>
</tr>
<tr>
<td></td>
<td>TDA-2.1</td>
<td></td>
<td>TDA-4.4</td>
</tr>
<tr>
<td></td>
<td>TDA-2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDA-2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDA-3.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• **Strategy:**

 – **Similar Development Effort for GP Technology:**

 • GPWG recommends similar development efforts for the widest variety of system solutions and propellants be pursued to meet NASA mission needs.

 • This will give mission planners the greatest range of technologies available & thus lead to the greatest opportunity for infusion.

 – **SmallSats:**

 • GPWG sees SmallSats (≤180 kg & including CubeSats) to have tremendous promise as flight platform to address TDAs, build heritage, support industrial growth, & enable some small science mission such as Lunar Flashlight.

 • Budget environments makes larger demonstration missions cost-prohibitive.

 • Flagship missions risk-averse to new (non-heritage) propulsion systems.
• Strategy:
 – Public–Private Partnership:
 • Private commercial entities are increasingly interested in green propulsion
 – Tending to focus more on developing a sellable product
 – Can leave gaps in the knowledge base where technical issues are avoided or ignored
 – Greatest value achieved through partnering & teaming

 • Public-private partnerships best served through intra & inter-agency coordination:
 – Broad Agency Announcements (BAA)
 – Announcements of Collaborative Opportunities (ACO)
 – Space Act Agreements (SAA)
 – Collaborative Agreement Notices (CAN)
 – Small Business Innovative Research (SBIR)
 – Small Business Technology Transfer (STTR)
 – NASA Space Technology Research Fellowships (NSTRF)

• Universities & national labs can be capable & cost effective partners to NASA
 – Help dive deep into specific technical issues
 – Develop the industry’s future subject matter experts
Missions, Projects, & Activities

- GPIM [TDM, GRC, GSFC, KSC, MSFC]
 - AF-M315E Demonstration Mission
 - Five 1N Thrusters
 - Complete & awaiting launch
 - Ball BCP-100; Aerojet GPPS

- Lunar Flashlight [JPL, MSFC]
 - Launch on SLS EM-1
 - Lunar Polar Orbiter
 - LMP-103S Propulsion System
 - Four 100mN thrusters
 - > 200 m/s ΔV
 - Thruster Qual in May 2018
 - Delivery to MSFC in August 2018
Missions, Projects, & Activities

• **Ground Development (ACO & TP):**
 - Busek Co. [GRC, MSFC]: **COMPLETED**
 - Maturation of Busek’s 5N Green Monopropellant Thruster
 - Testing of a 5N AF-M315E thruster
 - Orbital ATK [MSFC]:
 - Green Propellant Thruster Technology Maturation
 - Testing of a 440N LMP-103S Thruster
 - Aerojet Rocketdyne, Inc. [GRC, GSFC]:
 - “2nd generation” 1-N Green Propellant Infusion Mission (GPIM) GR-1 Thruster
 - Testing of a 1N AF-M315E Thruster
 - MPS-130
 - Green propulsion system for Small Satellites
• IRAD:
 – Propellants:
 • AF-M315E Surface Tension [MSFC, GRC]
 • LMP-103S ADN Desolvation & Resolvation Rate [MSFC, GSFC]
 • AF-M315E Radiation Exposure [MSFC]
 – Components & Systems:
 • 22N LMP-103S Thruster Qualification [ECAPS, GSFC]
 • Green Prop Thrusters, Components, & Systems [MSFC]
 • Dual Mode AF-M315 System Demo [MSFC]
 • Propellant Tank Fracture Mechanics [GSFC]
 • BGT-X5 (0.5N) Thruster Improvements [MSFC]
 • Electrodeposition of PGMs from Low Temp Molten Salts [MSFC]
 – Range Access:
 • Green Propellant Loading Demo [GSFC, WFF]
 • Small Satellite Green Propellant Loading System [MSFC]
 – Other Studies:
 • Green Propellants on ISS [NASA-JAXA]
QUESTIONS
Acknowledgements

• Presentation Contributors:
 – Tom Brown (MSFC)
 – Chris Burnside (MSFC)
 – Carlos Diaz (MSFC)
 – Mary Beth Koelbl (MSFC)
 – Bill Marshall (GRC)
 – Andrew Maynard (GSFC)
 – Steve McKim (GSFC)
 – Henry Mulkey (GSFC)
 – Kevin Pedersen (MSFC)
 – Tim Smith (GSC)
 – Hunter Williams (MSFC)