Methodologies for Qualification of Additively Manufactured Aerospace Hardware

Swedish Royal Academy of Engineering Sciences
Stockholm, Sweden
June 26, 2018

Douglas N. Wells
Brian M. West
NASA Marshall Space Flight Center
Huntsville AL, USA
Overview of Discussions

• Additive Manufacturing at NASA
• NASA MSFC AM technical standards
• Key AM Qualification Concepts
• Foundational Controls
 • Qualified Metallurgical Process
 • Material properties
• Part production process
 • Qualified Part Process
• Observations, Challenges, and Closing
NASA is not homogeneous
• Technical and risk cultures vary by facility and mission as shaped by its history
• Human-rated spaceflight
 • JSC, KSC, MSFC
• Space Science
 • GSFC, JPL
• Aeronautics
 • LaRC, GRC, ARC
Additive Manufacturing at NASA

AM in space-related NASA missions:

For-space:

In-space:
Supporting the Mission

Earth
- Notional Commercial Platform
- ISS
- Commercial launch Vehicles

Moon
- SLS
- Orion
- Robotic Surface Missions
- Lunar Orbital Platform - Gateway
- PPE - Habitat - Airlock - Logistics

Mars
- Mars robotic exploration, technology development

In LEO
- Commercial & International partnerships

In Cislunar Space
- A return to the moon for long-term exploration

On Mars
- Research to inform future crewed missions
Additive Manufacturing (at MSFC)

• Extensive experience in Additive Manufacturing (AM) technologies, and have been involved in about 30 different AM systems in the past 26 years.

• Over $10M capital investments in metallic powder bed systems in the past 5 years, and have committed significant engineering manpower resources

• NASA AM Objectives
 • Decrease production lead time & costs
 • Develop Flight Certification Standards
 • Process development and characterization
 • Share knowledge and data in pursuit of smart vendor base
 • Design optimized components & test at relevant conditions

• Appropriate Application
 • High complexity & difficult to manufacture
 • Low production rate
 • Long lead time & high cost
Motivation: **Laser Powder Bed Fusion** in near term, human-rated flight projects:
- Space Launch System
- Orion Spacecraft
- Commercial Crew Program

Document content is determined by
- **Policy**: MSFC-STD-3716 and
- **Procedure**: MSFC-SPEC-3717
We will return to this concept repeatedly
Overview of Current Requirements

Flowcharts from MSFC-STD-3716
Overview of Current Requirements

Flowcharts from MSFC-STD-3716

First Part of Lecture:
General Requirements and Foundational Process Controls
Overview of Current Requirements

Flowcharts from MSFC-STD-3716

Second Part of Lecture:
Part Production Controls
General Requirements and Foundational Process Controls
Additive Manufacturing Control Plan
- Critical to define implementation policies for program or project
- Describes implementation of all requirements
 - Includes tailoring of requirements
- Becomes governing document in place of standards
Overarching and Foundational Controls

Quality Management System
- Critical to define implementation policy
- Describes implementation of all requirements
- Becomes governing document in place of standards
Equipment and Facility Control Plan

- Plan required by Standard
 - Procedures in Specification
- Flexibility in implementation
- Governs AM equipment and facility
 - Qualification
 - Maintenance
 - Calibration
Personnel Training
- Training Plan required by Standard
 - Expectations in Specification
 - Flexibility in implementation
 - Covers all personnel involved in AM
 - Consistent framework for training and certification of abilities
 - Clear delineations of abilities and responsibilities associated with granted certifications
 - Evaluations demonstrating adequacy
 - QMS awareness
Qualified Metallurgical Process

Begins as a **Candidate** Met. Process

Defines aspects of the basic, **part agnostic**, fixed AM (L-PBF) process:

- Feedstock
- Fusion Process
- Thermal Process

Enabling concept

- Machine qualification and re-qualification
- Process control metrics, SPC
- Design values
Feedstock Controls

- Method of manufacture
- Chemistry
- Particle Size Distribution
- Particle morphology
- Blending and doping controls
- Cleanliness and contamination
- Packaging, labeling, environmental controls
- Reuse controls
Candidate Metallurgical Process

Fusion Controls

• Equipment:
 • Make, Model, Serial Number
 • Software/Firmware versions
 • Settings (dosing, recoater speed)
• Atmosphere Controls
 • Oxygen limits
 • Ventilation flow rate
 • Gas quality (purity, dew point)
• Fusion Parameters
 • Layer thickness
 • Power, speed, hatch, contours...

Source: Fraunhofer IWU
Fusion Controls

Tolerance to variation

- Part build scenarios create variation in process conditions
 - Thermal history effects
 - Scan patterns
- “Process Box” evaluation for qualification
- QMP needs to be “centered” in the process box to allow robust part build capability

Candidate Metallurgical Process

- **Hot**
 - High Energy
 - Keyhole porosity
 - Overheating/burning

- **Cold**
 - Low Energy
 - Lack-of-fusion

Process Limit Boundary:
- Outside boundary = defects

Variation Boundary due to part thermal history:
- Must stay within Process Limit Boundary

Process Box: Resulting variations in nominal commanded process due to part geometry, scan pattern and thermal history
Thermal Process
Post-build Thermal Processing

- Includes definition of all thermal process steps
- **Evolution of microstructure**
- Stress Relief, Hot Isostatic Pressing, Solution Treating, Aging, etc.

IN718 Microstructural Evolution
Qualification the Candidate Metallurgical Process

Establishes a QMP: Qualified Metallurgical Process

Step 1: Metallurgical Qualification
- Consistency throughout build area
- Tolerance to variation
- Interface quality (restart, contour passes, striping, islands, multi-laser zones)
- Top layer melt pools
- Microstructural evolution
 - Final state free of strong texture

Melt Pool Evaluation
Qualified Metallurgical Process

Qualification the Candidate Metallurgical Process
Establishes a QMP: Qualified Metallurgical Process

Step 2: Surface texture and detail resolution
- Reference Parts
- Mix of qualitative and quantitative measures
Qualified Metallurgical Process

Qualification the Candidate Metallurgical Process
Establishes a QMP: Qualified Metallurgical Process

Step 3: Mechanical properties
• Tensile, fatigue, toughness...
• Registration through Equivalence
 • Material Property Suite
 • “In-family” performance

QMP “Registration” is the process of demonstrating properties of the qualified process are equivalent to those in the applicable MPS - the next topic.
The Material Property Suite (MPS) consists of four inter-related entities:

1. Data Repository
2. Design Values
3. Process Control Reference Distribution
4. SPC acceptance criteria for witness testing
Material Property Suite

Data Repository
Includes data from
• Qualification testing
• Material Characterization
• Pre-production Article Evaluations

Grouping of data
Group data by
• QMP = Material/process/heat treat
• “Combinable” conditions for design
Data Repository, continued
Contains all data needed for
• Setting Design Values
• Property equivalence evaluations and QMP Registration
• Setting the Process Control Reference Distribution
Material Property Suite

Design Values

- Statistically substantiated
- Applicable sources of variability included
- Utilizes all appropriate data sources in Repository
- May include additional margin for safety
Process Control Reference Distribution

- Statistically describes nominal witness behavior
- Utilizes all appropriate sources of witness coupon data in Repository
- Used to set acceptance criteria for witness tests
Material Property Suite

Statistical Process Control Acceptance Criteria

- Derived from PCRD
- Acceptance criteria for witness tests

SPC Acceptance Criteria for Witness Testing
PCRD and SPC Criteria

- Witness test acceptance is **not** intended to be based upon design values or “specification minimums”
- Acceptance is based on witness tests reflecting properties in the MPS used to develop design values
- Suggested approach
 - Acceptance range on mean value
 - Acceptance range on variability (e.g., standard deviation)
 - Limit on lowest single value
Checkpoint: Key AM Qualification Concepts

- Qualified Metallurgical Process (QMP)
- Statistical Process Control (SPC)
- Material Properties Suite (MPS)
- Qualified Part Process (QPP)

Rationale for Qualified AM parts
Part Production Controls
Overview of Current Requirements

Part Production Controls

Candidate Part

Foundational Process Control Requirements
- Definition of Metallurgical Process
- Qualification of Metallurgical Process
- Equipment Control
- Personnel Training
 - Material Property Suite
 - Material property data
 - Design values
 - Process Control Reference Distribution
 - Statistical Process Control Criteria

Part Production Control Requirements
- Design
 - Part Classification
 - Part Production Plan
 - Pre-Production Article Evaluation
 - Manufacturing Readiness Review
 - Qualified Part Process
 - Production Engineering Controls
 - Production Controls
 - Acceptance testing / Statistical Process Control

Additive Manufacturing Control Plan

General Requirements
- Quality Management System
- AMCP
- General Requirements
- QMS
- MSFC-MP-3707
- "Requirements levied by MSFC-STD-3716

Part Production Controls
- Design Process
- Classify Part
- PPD
- Pre-Prod Article Plan
- Pre-Prod Article Evaluation
- Pre-Prod Article Report
- MIE
- SRR
- Production Engineering Controls
- Production
- NDE Acceptance Test
- Service
- MPS Data
- Design Properties
- SPC Criteria
- FCP
- Qualification Maintenance Calibration
- Machine 1 Master QMP/R
- Machine 2 Master QMP/R
- Machine 3 Master QMP/R
- Machine 4 Master QMP/R
- Machine 5 Master QMP/R
Design Process

• Design For Additive Manufacturing Paradigm Shift
 • New benefits bring new constraints
 • Must decide manufacturing method as early as possible

Self-Supporting Angles

Topology Optimization FDM Tool Rac.

Build Simulation

Powder Removal Features

Hybrid crown & perforated block support
Part Classification

Classification Questions

1. Catastrophic Failure?
2. Heavily Loaded?
3. Does the build have challenging aspects or areas that cannot be inspected?

Classification System:
- Class A1
- Class A2
- Class A3
- Class A4
- Class B1
- Class B2
- Class B3
- Class B4
Part Classification

- Part Classification system is a **risk communication** tool
 - What happens if the part fails?
 - How severe is the stress in the part?
 - How challenging is the part to design, build, and **inspect**?

- Established criteria at each step for consistency

- The higher a part’s classification, the more stringent the downstream requirements become
 - B4 parts should need less scrutiny than an A1 part
 - Non-destructive evaluation needs also likely to differ

- Part-specific tailoring starts with classification
Challenges to the classification system encountered early

- Draft version contained a Class C for non-service components
 - Intent: fit check parts, demonstrations, visual/design aids
 - Revision now considering a “non-structural” for-service Class C
- Did not account for Science Mission Classes (biased to human-rating perspective)
 - Mission classes A-D are defined per NASA NPR 8705.0004
 - Hubble Telescope is a Class A and a Cubesat would be a Class D
- Part Class and Mission Class together influence the requirement set to maintain appropriate levels of mission assurance commensurate with the scenario.
- Future Agency-Level documents will be written for each of the following areas
 - Manned Space Flight
 - Non-Manned Space Flight, with Mission Classes A-D
 - Aeronautics
Part Production Plans force integration of part processing

- Interdependence of layout and downstream requirements
 - Surface finishing
 - Inspection
 - Powder removal

- Common Challenges:
 - Integrated Structural Integrity Rational
 - Required statement of how part integrity is assured (NDE, proof test, process controls)
Part Production Plan

- PPP, Common Challenges (Continued)
 - Locked build files
 - Understanding cryptographic hash
 - Description of controlled post processes
 - NDE Plan
 - Pre-Production Article Plan
 - Critical Areas
 - Thin Sections
 - Thick Sections

Stray vectors
Establishing a **Qualified Part Process**

- Pre-Production Article Evaluation
 - Powder removal, dimensions, surface quality, mechanical properties, internal quality, microstructure, high risk areas...
- Additive Manufacturing Readiness Review
 - Stakeholder review of production engineering record, part drawing, approved PPP, Pre-Production Article Report...
- If successful, **AMRR demarcates when part process is qualified**
 - Complete part manufacturing process is locked for production
 - No changes without re-qualification or proper disposition
 - QPP state is documented in the **Quality Management System**
Key AM Qualification Concepts

Qualified Metallurgical Process (QMP)

Statistical Process Control (SPC)

Qualified Part Process (QPP)

Material Properties Suite (MPS)

Rationale for Qualified AM parts
Part Production — Follow-through on controls

- Statistical Process Control (SPC)
 - Stand Alone acceptance, just making one part
 - A1: 6 tensile, 2 HCF, 2 Met, 1 Chemistry, 1 Full height Contingency
 - Compare to PCRD
- Continuous Production
 - A1: 4 tensile, 1 Met, 1 Chemistry, 1 Full height Contingency
 - Compare to continuous Control Chart
- Intermittent SPC evolution builds during production
- SPC Challenges:
 - Do the samples stay with the parts?
 - How to flag a part without the samples tested?
 - Setting limits that identify drift
Common Challenges

• Turn around of samples used to monitor builds
 • Often three or more months from build to fully heat treated test data
 • Delay is a risk!

• Conventional manufacturing facilities and vendors are not used to the required level of process control
 • Much more difficult when working with vendors
 • Switching Alloys
 • Powder Reuse

• Cleaning of AM parts for contamination-sensitive applications

• Understanding “Influence Factors” in mechanical properties

• Implementing fracture control

• Maintaining the Digital Thread
How to approach in-situ monitoring of AM processes?

• Harnessing the technology is only half the battle
 • Detectors, data stream, data storage, computations
• Second half of the battle is quantifying in-situ process monitoring reliability

Community must realize that passive in-situ monitoring is an NDE technique

1. Understand physical basis for measured phenomena
2. Proven causal correlation from measured phenomena to a well-defined defect state
3. Proven level of reliability for detection of the defective process state
 • False negatives and false positives → understanding and balance is needed

Closed loop in-situ monitoring adds significantly to the reliability challenge

• No longer a NDE technique – may not be non-destructive
• Establishing the reliability of the algorithm used to interact and intervene in the AM process adds considerable complexity over passive systems
• Final Box: Service!

Injector
• Decreased cost by 30%
• Reduced part count: 252 to 6

FTP
• Schedule reduced by 45%
• Reduced part count: 40 to 22
• Successful tests in both Methane and Hydrogen

MCC
• Schedule reduction > 50%
• SLM with GRCop-84
• Methane test successful

GRCop-84 3D printing process developed at NASA and infused into industry

1/25/2018

Ox-Rich Staged Combustion Subscale Main Injector Testing of 3D-Printed Faceplate

LOX/Methane Testing of 3D-Printed Chamber Methane Cooled, tested full power

AM Demonstrator Engine
Currently, there are two primary opportunities to ensure AM reliability

1. In-Process Controls (Control what you do)
 - Qualify the AM Process (QMP) and Part Process (QPP)
 - Understanding fundamentals, and knowing the process failure modes (pFMEA)
 - Identifying observable metrics and witness capabilities
 - Meticulous process scrutiny through SPC

2. Post-Process Evaluation (Evaluate what you get)
 - Non-destructive Evaluation, Proof testing
 - Post-build process monitoring data evidence

Part reliability rationale comes from sum of both in-process and post-process controls, weakness in one must be compensated in the other
Key AM Qualification Concepts

- Qualified Metallurgical Process (QMP)
- Statistical Process Control (SPC)
- Material Properties Suite (MPS)
- Qualified Part Process (QPP)

Rationale for Qualified AM parts
Thank you!
Missions Classes based on risk:
- Class A (per NPR 8705.0004)
- Class B (per NPR 8705.0004)
- Class C (per NPR 8705.0004)
- Class D (per NPR 8705.0004)
- Associated GSE and test hardware

<table>
<thead>
<tr>
<th>Characterization</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority (Criticality to Agency Strategic Plan)</td>
<td>High priority</td>
<td>High priority</td>
<td>Medium priority</td>
<td>Low priority</td>
</tr>
<tr>
<td>National significance</td>
<td>Very high</td>
<td>High</td>
<td>Medium</td>
<td>Low to medium</td>
</tr>
<tr>
<td>Complexity</td>
<td>Very high to high</td>
<td>High to medium</td>
<td>Medium to low</td>
<td>Medium to low</td>
</tr>
<tr>
<td>Mission Lifetime (Primary Baseline Mission)</td>
<td>Long, > 5 years</td>
<td>Medium, 2-5 years</td>
<td>Short, < 2 years</td>
<td>Short, < 2 years</td>
</tr>
<tr>
<td>Cost</td>
<td>High</td>
<td>High to medium</td>
<td>Medium to low</td>
<td>Low</td>
</tr>
<tr>
<td>Launch Constraints</td>
<td>Critical</td>
<td>Medium</td>
<td>Few</td>
<td>Few to none</td>
</tr>
<tr>
<td>In-Flight Maintenance</td>
<td>N/A</td>
<td>Not feasible or difficult</td>
<td>Maybe feasible</td>
<td>May be feasible and planned</td>
</tr>
<tr>
<td>Alternative Research Opportunities or Re-flight Opportunities</td>
<td>No alternative or re-flight opportunities</td>
<td>Few or no alternative or re-flight opportunities</td>
<td>Some or few alternative or re-flight opportunities</td>
<td>Significant alternative or re-flight opportunities</td>
</tr>
<tr>
<td>Examples</td>
<td>HST, Cassini, JIMO, JWST</td>
<td>MER, MRO, Discovery payloads, ISS Facility Class Payloads, Attached ISS payloads</td>
<td>ESSP, Explorer Payloads, MIDEQ, ISS complex subrack payloads</td>
<td>SPARTAN, GAS Can, technology demonstrators, simple ISS, express middeck and subrack payloads, SMEX</td>
</tr>
</tbody>
</table>
APPENDIX A. PART PRODUCTION PLAN CONTENT

This Appendix is not a mandatory part of the standard. The information contained herein is intended for guidance only.

The L-PBF PFP is expected to address the following content. Items in this list that are fully controlled by the ANC P need not be repeated in the PFP. The controlled requirements of the ANC P, part drawing, and PFP are to be sufficient to produce the production engineering record.

- **Drawing number and part name**
- **Part summary, providing a brief summary of**
 - The purpose of the part in context to the system,
 - The operational environments (temperatures, fluids),
 - CAD model views to illustrate the part and key features
- **Material**
 - Identification of the QM P specified for production.
 - Identification of MR P used for assessment
- **Part classification with summary rationale for consequence of failure, structural demand, and AM risk**
- **Integrated Structural Integrity Rationale for the part**
 - Describe limiting factors in strength and fracture analyses
 - Highlight areas of high structural demand and high AM risk per classification
 - Describe all non-destructive testing and the degree of coverage or any limitations
 - Describe all proof test operations, including role in integrity rationale, method of analysis, and coverage or limitations
- **List of required witness tests, witness articles, and associated acceptance requirements**
- **Illustration of the complete build with part orientation, location, and witness specimens**
- **Summary list or table with all production steps in sequence as governed by the Production Engineering Record**
 - Include all key operations such as build, powder removal, as-built inspection, support removal, platform removal, heat treating, cleaning, welding, machining, surface treatments, NDE steps, proof test.
- **Description of any specific controls required for post-build part processing operations that are process-sensitive, i.e., outcomes of the operation is difficult to verify but critical to the part**
- **Pre-production article requirements, or reference to a separate plan**
- **List of references supporting the PFP (analysis reports, fracture control reports, etc.)**
- **Complete list of all required part acceptance certificates of compliance information**
 - Dimensional inspection report, NDE reports, powder lot, build logs, etc.

CHECK THE MASTER LIST VERIFY THAT THIS IS THE CORRECT VERSION BEFORE USE