Core/Combustor-Noise Baseline Measurements for the DGEN Aeropropulsion Research Turbofan

Devin K. Boyle, Brenda S. Henderson and Lennart S. Hultgren
NASA Glenn Research Center
Cleveland, OH 44135

AIAA/CEAS Aeroacoustics Conference
Atlanta, GA, June 25-29, 2018

NASA Advanced Vehicles Program
Advanced Air Transport Technology Project
Aircraft Noise Reduction Subproject
Outline

1. Introduction
2. Experimental Setup
3. Test Scope
4. Repeatability and Comparison with Previous Results
5. Coherence Techniques and Results
6. Coherent Power and Coherence at Mid- & Far-field Locations
7. Higher-Order Modes
8. Core-Noise Research Roadmap
9. Summary
Core/Combustor Noise – DART Facility

Core Noise Becoming More Important

- Turbofan design trends, engine-cycle changes, and noise-mitigation advances are expected to reduce other propulsion noise sources
- Emerging lean-combustor designs could increase combustor noise level; Also less transmission loss due to fewer wide-chord blades
- Airframe, combustor and fan noise (in no particular order) need reduction to meet future noise goals

Objectives for Initial 2017 Core Noise Testing

- Baseline core-noise acoustic measurements
- Comparison with 2014 DGEN test results
- (Ongoing) Development/Evaluation of measurement and noise-mitigation techniques
DART Core/Combustor-Noise Test Experimental Setup

- 7 farfield microphones at an average of 38 ft (∼ 51 core-nozzle diameters) with polar angle range: about 110° to 140°
- 1 midfield stand-mounted microphone (MF101)
 - 130° direction, engine-center height, 10 ft distance (∼ 13.5 core-nozzle diameters)
- 2 infinite-tube pressure sensors (ITPs) at core-nozzle exit
 - NE801 (6 o’clock) and NE802 (7 o’clock) azimuthal position
- Acoustic data acquired simultaneously
- Engine performance data recorded by DART engine-control system
Core Exit Measurement Locations

- Kulite XCS-190, 10 psi differential
- 50:1 ratio - tube length after:ahead of sensor
Engine RPM Profiles and Test Points

- **FADEC in automatic mode**
- **Holds RPM extremely steady**
- **Each run: idle to max power and back**
- **60 s per test point (120 s total dwell)**

<table>
<thead>
<tr>
<th>Point #</th>
<th>Power, %</th>
<th>Point #</th>
<th>Power, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>13</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>92.5</td>
<td>16</td>
<td>92.3</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

- **3.32 fan gear ratio**
- **14 fan blades**
- **38 low-pressure turbine (LPT) rotor blades**
Background Noise/Measurement Repeatability, 33% N_{1C}

- Combustor broadband noise range < 1 kHz
- Excellent measurement repeatability
Comparing Core-Exit and Midfield SPL to 2014 Results

- Combustor broadband noise range < 1 kHz
- Comparable ITP levels for $f \leq 1$ kHz
- 2014 12.2 Hz SPL rescaled to 6.1 Hz binwidth
- 2014 MF results adjusted to 10 ft distance (r^2)
- MF broadband levels are in good agreement
SPL Variation with Engine Power

- 6 o’clock & 7 o’clock ITPs
- Midfield Microphone at 130°
- Farfield Microphone at 131°
- Fan BPF and harmonics
- Unclear reason for haystack around 2BPF_F
- No clear evidence of ITP-tube vortex shedding
Coherence Techniques Used to Educe Core-Noise Components

• Direct measurement of core noise made more difficult due to presence of (often higher level) jet noise
 • Core noise is masked by jet noise during static tests at most power settings
 • Forward-flight effects reduce jet noise more than core noise in flight
• Coherence techniques allow identification of mid- and far-field core-noise components
• Two-signal source separation leads to eduction of core-noise constituents

\[G_{vv} = \gamma_{xy}^2 G_{yy} \]

where:

- \(G_{vv} \) - Core-noise component
- \(\gamma_{xy}^2 \) - Magnitude-squared coherence
- \(G_{yy} \) - Total-noise signal
ITP Coherence Variation with Engine Power

- Coherence level below limit meaningless
- Shaft Passing Frequencies (SPF)
- Combustor broadband noise region identified
- Plane wave mode: $m = 0$
- Up to about 450 Hz at 60%
- Range increases with power
Mid/Farfield Coherent Power & Coherence at 60% N_{1C}

- 6 o'clock & 7 o'clock ITPs used as reference for 2-signal method
- Anything below statistical limit meaningless
- Combustor noise ($m = 0$) detected up to about 500 Hz using either reference ITP
- 2s-method with 7 o'clock ITP detects second broadband-noise range, possibly ($m = \pm 1$)
- 6 o’clock & 7 o’clock ITPs used as reference for 2-signal method
- Anything below statistical limit meaningless
- Combustor noise \((m = 0)\) detected up to about 500 Hz using either reference ITP
- 2s-method with 7 o’clock ITP detects second broadband-noise range, possibly \((m = \pm 1)\)
• 6 o’clock & 7 o’clock ITPs used as reference for 2-signal method
• Anything below statistical limit meaningless
• Combustor noise ($m = 0$) detected up to about 500 Hz using either reference ITP
• Weak evidence of second broadband-noise range, possibly ($m = \pm 1$)
Mid/Farfield Coherent Power & Coherence at 90% N_{1C}

- 6 o'clock & 7 o'clock ITPs used as reference for 2-signal method
- Anything below statistical limit meaningless
- Combustor noise ($m = 0$) detected up to about 500 Hz using either reference ITP
- Coherence too low to detect second broadband-noise range, ($m = \pm 1$)
Duct Mode Cut-On/Off Frequencies at Core Exit

<table>
<thead>
<tr>
<th>Power</th>
<th>m = 0</th>
<th>n = 0</th>
<th>n = 1</th>
<th>n = 2</th>
<th>n = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 %</td>
<td>m = 0</td>
<td>0</td>
<td>11,32</td>
<td>23,03</td>
<td>34,54</td>
</tr>
<tr>
<td></td>
<td>m = 1</td>
<td>793</td>
<td>11,55</td>
<td>23,04</td>
<td>34,55</td>
</tr>
<tr>
<td></td>
<td>m = 2</td>
<td>1,586</td>
<td>11,64</td>
<td>23,08</td>
<td>34,57</td>
</tr>
<tr>
<td></td>
<td>m = 3</td>
<td>2,378</td>
<td>11,77</td>
<td>23,16</td>
<td>34,62</td>
</tr>
<tr>
<td>70 %</td>
<td>m = 0</td>
<td>0</td>
<td>11,49</td>
<td>22,95</td>
<td>34,41</td>
</tr>
<tr>
<td></td>
<td>m = 1</td>
<td>790</td>
<td>11,52</td>
<td>22,96</td>
<td>34,42</td>
</tr>
<tr>
<td></td>
<td>m = 2</td>
<td>1,580</td>
<td>11,60</td>
<td>23,00</td>
<td>34,45</td>
</tr>
<tr>
<td></td>
<td>m = 3</td>
<td>2,370</td>
<td>11,73</td>
<td>23,07</td>
<td>34,50</td>
</tr>
<tr>
<td>80 %</td>
<td>m = 0</td>
<td>0</td>
<td>11,46</td>
<td>22,90</td>
<td>34,34</td>
</tr>
<tr>
<td></td>
<td>m = 1</td>
<td>789</td>
<td>11,49</td>
<td>22,91</td>
<td>34,35</td>
</tr>
<tr>
<td></td>
<td>m = 2</td>
<td>1,577</td>
<td>11,57</td>
<td>22,95</td>
<td>34,37</td>
</tr>
<tr>
<td></td>
<td>m = 3</td>
<td>2,365</td>
<td>11,71</td>
<td>23,02</td>
<td>34,42</td>
</tr>
<tr>
<td>90 %</td>
<td>m = 0</td>
<td>0</td>
<td>11,41</td>
<td>22,79</td>
<td>34,18</td>
</tr>
<tr>
<td></td>
<td>m = 1</td>
<td>785</td>
<td>11,44</td>
<td>22,81</td>
<td>34,19</td>
</tr>
<tr>
<td></td>
<td>m = 2</td>
<td>1,570</td>
<td>11,52</td>
<td>22,85</td>
<td>34,22</td>
</tr>
<tr>
<td></td>
<td>m = 3</td>
<td>2,355</td>
<td>11,65</td>
<td>22,91</td>
<td>34,27</td>
</tr>
</tbody>
</table>

- Estimates based on DGEN380 mean-line data from the 2014 test
- Radial \((n > 0)\) modes do not propagate until significantly higher frequencies due to thin duct
DART Core-Noise Research Road Map

Baseline Combustor Noise Measurements → Instrumentation Refinements → Core-Nozzle Circumferential Array Measurements

Design Tailpipe for Liner Testing → Hot-Liner Testing Circumferential and Axial Array

Summary

- Core/Combustor noise must be addressed to ensure that far-term concept aircraft meet anticipated noise limits
- DART/AAPL core-noise baseline test performed Aug 2017
- Initial data analysis and conclusions presented here
 - Acoustic data deemed to be of high quality, compares well with 2014 results and serves as a solid baseline for future work with DART
 - Combustor noise components of total noise signatures were educed using a two-signal source-separation method
 - Combustor coherent broadband noise was detected in expected frequency range
 - A second frequency range of coherent broadband noise was detected – likely first azimuthal mode of the combustor noise (preliminary-future testing will perform circumferential survey of pressure field at nozzle exit)

Special thanks to: Dr. Dan Sutliff and the Facilities Team for envisioning and realizing DART as well as AAPL staff for their expertise and dedication in preparing for and executing this test.
Questions?
Backup (1): Shaft and Blade Passing Frequencies

<table>
<thead>
<tr>
<th>Point #</th>
<th>Power, %</th>
<th>SPF<sub>H</sub>, Hz</th>
<th>SPF<sub>L</sub>, Hz</th>
<th>SPF<sub>F</sub>, Hz</th>
<th>BPF<sub>L</sub>, Hz</th>
<th>BPF<sub>F</sub>, Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>452</td>
<td>244</td>
<td>73</td>
<td>9253</td>
<td>1027</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>453</td>
<td>244</td>
<td>73</td>
<td>9256</td>
<td>1027</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>611</td>
<td>370</td>
<td>112</td>
<td>14069</td>
<td>1561</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>681</td>
<td>444</td>
<td>134</td>
<td>16884</td>
<td>1874</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>739</td>
<td>518</td>
<td>156</td>
<td>19701</td>
<td>2186</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>787</td>
<td>593</td>
<td>179</td>
<td>22518</td>
<td>2499</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>831</td>
<td>667</td>
<td>201</td>
<td>25332</td>
<td>2811</td>
</tr>
<tr>
<td>8</td>
<td>92.5</td>
<td>842</td>
<td>685</td>
<td>206</td>
<td>26022</td>
<td>2888</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>454</td>
<td>244</td>
<td>73</td>
<td>9255</td>
<td>1027</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>453</td>
<td>244</td>
<td>73</td>
<td>9256</td>
<td>1027</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>612</td>
<td>370</td>
<td>112</td>
<td>14074</td>
<td>1562</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>682</td>
<td>445</td>
<td>134</td>
<td>16890</td>
<td>1874</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>739</td>
<td>519</td>
<td>156</td>
<td>19707</td>
<td>2187</td>
</tr>
<tr>
<td>14</td>
<td>80</td>
<td>787</td>
<td>593</td>
<td>179</td>
<td>22521</td>
<td>2499</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>831</td>
<td>667</td>
<td>201</td>
<td>25337</td>
<td>2812</td>
</tr>
<tr>
<td>16</td>
<td>92.3</td>
<td>842</td>
<td>684</td>
<td>206</td>
<td>26002</td>
<td>2885</td>
</tr>
</tbody>
</table>