Ion Velocity in the Discharge Channel and Near-Field of the HERMeS Hall Thruster

Wensheng Huang, Hani Kamhawi, and Daniel A. Herman
NASA Glenn Research Center
Jul 10, 2018
Present at AIAA Propulsion and Energy Forum

Approved for public release; distribution is unlimited.
Outline

• Introduction
• Principles of LIF
• Experimental Setup
• Data analysis
• Results
 ▪ Near the discharge channel
 ▪ Downstream of pole covers
• Conclusion
Introduction

• A NASA GRC and JPL team developed a 12.5-kW, magnetically-shielded Hall thruster, called Hall Effect Rocket with Magnetic Shielding (HERMeS)

• Transitioned to commercial production under Aerojet Rocketdyne’s Advanced Electric Propulsion System (AEPS)

• Candidate to provide propulsion for the Power and Propulsion Element, the first element of NASA’s Gateway

• Continuing risk reduction activities using HERMeS

• Developing a related plasma diagnostics package called Plasma Interaction Sensors for Correlation with Environment Simulations (PISCES)
HERMeS Test Campaign Status

- Other JPC papers on AEPS and HERMeS
 - Hall, AEPS hollow cathode testing (EP3, Mon 9:30a)
 - Benavides, Thrust vector probe (EP8, Mon 3:30p)
 - Mackey, Uncertainty in thrust stand (EP8, Mon 4:30p)
 - Frieman, TDU long duration wear test (EP10, Tue 9:30a)
 - Lobbia, TDU environmental testing (EP10, Tue 10:00a)
 - Lopez Ortega, Modeling pole erosion (EP10, 10:30a)
 - Lobbia, Accelerated backsputter test (EP10, 11:00a)
 - Kamhawi, Magnetic topology optimization (EP14, 3:30p)
 - Ahern, In-situ wear assessment (EP14, 4:00p)
 - Mikellides, Cathode spot-to-plume mode simulation (EP14, 4:30p)
 - Yeats, 13 kW EP system architecture (EP14, 5:30p)
 - Katz, Accel region electron transport sim (EP17, 9:30a)
 - Choi, 3D electron fluid model for plume (EP17, 10:00a)
 - Lopez Ortega, First principles transport model (EP20, 3:30p)
Why LIF?

• HERMeS/AEPS project need plasma data from inside the discharge channel for model validation
 ▪ Injected probes (ex: HARP) are too perturbative (Jorns, AIAA-2015-4006)

• LIF can get ion velocity without perturbing plasma, which can be related back to electron mobility

• Concurrently conducting LIF studies at JPL (Chaplin, IEPC 2017-229) and GRC
 ▪ Functional checkout test and get reference TDU data in GRC VF6
 ▪ EDU test in GRC VF5 at lowest achievable background pressure
 ▪ Time resolved LIF at JPL Owens chamber

• Goals
 ▪ Complete data set for model validation
 ▪ Confirmation that EDU and TDU have the same discharge characteristics
How does LIF work?

• Moving atoms absorb light at shifted frequency (Doppler effect)
• Collect emitted fluorescence while varying laser frequency to measure velocity distribution function (VDF)
• XE II 835.0 nm is easy to access with commercial diode laser
 - Metastable
 - Representative of bulk ion VDF
 - Fluoresce in green, 542.1 nm
Experimental Setup – Test Article

• HERMeS TDU1
 ▪ Throttle range from 0.6 to 12.5 kW, 2000 to 3000 sec
 ▪ Magnetic shielding topology
 ▪ Centrally mounted cathode, 7% cathode flow fraction
 ▪ Cathode tied to thruster body
 ▪ Test was in VF6, ~1.2e-5 Torr near thruster

• This presentation will focus on:
 ▪ 300, 400, 500, and 600 V conditions
 ▪ Nominal magnetic field
Experimental Setup – Air Side Injection Optics
Experimental Setup – Vacuum Side Optics
Experimental Setup – Tower Cooling and In-Situ Alignment
Experimental Setup – Air Side Collection

• Collected fluorescence > monochromator > photomultiplier > trans-impedance amplifier > lock-in amplifier > computer data

• Stationary reference signal > lock-in amplifier > computer data

• Computer
 ▪ Control thruster motion stages
 ▪ Control optics alignment motors
 ▪ Read wavemeter
 ▪ Read laser power monitor
 ▪ Read lock-in amplifier outputs
Data Analysis

- Saturation study was performed, broadening no more than 10% on narrowest VDFs
- Hyperfine structure and natural broadening small compared to the VDFs
- Zeeman effect uncorrected and will be treated in future analysis
- Data analysis steps:
 - Convert wavemeter and OG signal to velocity
 - Correct intensity by laser power variation
 - Apply curve-fits (Gaussian, skew-normal, twin Gaussian)
- Spatial uncertainty: 0.5 mm
- Velocity uncertainty: ±100 m/s typical (±600 m/s for noisiest scans)
Channel Centerline VDFs: 300 V, 6.3 kW

Intensity

Axial Velocity, km/s

Z = -0.3
Z = 0.5

Z = -0.3
Z = -0.2
Z = -0.1
Z = 0
Z = 0.05
Z = 0.1
Z = 0.15
Z = 0.2
Z = 0.25
Z = 0.3
Z = 0.4
Z = 0.5

National Aeronautics and Space Administration
Approved for public release; distribution is unlimited.
Channel Centerline VDFs: 600 V, 12.5 kW

Intensity

Axial Velocity, km/s

Z = -0.3

Z = 0.3
Why sinusoidal spatial oscillation appears as twin peak structure in time-averaged LIF
Channel Centerline Velocity Profiles

Averaged XEII velocity along channel CL

Velocity normalized by max velocity
Discharge Channel Ion Velocity Vector: 300 V, 6.3 kW

30 km/s = 612 eV

300 V, 6.3 kW
Discharge Channel Ion Velocity Vector: 600 V, 12.5 kW

30 km/s = 612 eV

600 V, 12.5 kW

30 km/s

0 0.2 0.4 0.6 0.8 1 1.2
R (normalized)

0 0.2 0.4 0.6 0.8
Z (normalized)

Intensity

Axial Velocity, km/s

Intensity, a.u.

Ion energy per charge, eV

Polar angle, deg.
Pole Cover Ion Velocity Vector

IFPC = Inner Front Pole Cover, OFPC = Outer Front Pole Cover
Preliminary Results for Energy of Ions Bombarding Pole Covers

<table>
<thead>
<tr>
<th>Operating condition</th>
<th>Average ion energy, IFPC, eV</th>
<th>FWHM energy, IFPC eV*</th>
<th>Average ion energy, OFPC, eV</th>
<th>FWHM energy, OFPC, eV*</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-6.3</td>
<td>0 to 20</td>
<td>25 to 72</td>
<td>81 to 119</td>
<td>33 to 91</td>
</tr>
<tr>
<td>400-8.3</td>
<td>3 to 7</td>
<td>19 to 74</td>
<td>77 to 99</td>
<td>97 to 145</td>
</tr>
<tr>
<td>500-10.4</td>
<td>2 to 5</td>
<td>26 to 46</td>
<td>75 to 77</td>
<td>102 to 155</td>
</tr>
<tr>
<td>600-12.5</td>
<td>2 to 15</td>
<td>20 to 48</td>
<td>Low signal</td>
<td></td>
</tr>
</tbody>
</table>

*Full-width-at-half-maximum value of the ion energy distribution. FWHM energy near IFPC were artificially broadened by Zeeman effect.
Conclusion

• New LIF capability for characterizing high-power EP devices at GRC
 ▪ Compatible with engineering hardware

• Completed functional checkout and collected TDU data

• Presence of low-energy population near discharge channel, likely to be CEX ions
 ▪ Energy and direction of high-energy and low-energy ions in excellent agreement with far-field RPA data

• Ions near IFPC have low average energy while ions near OFPC have high average energy; pole ions have large spread in energy
Acknowledgment

• We thank,
 • NASA Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project for funding this work,
 • Todd Tofil, Richard R. Hofer and David Jacobson for their leadership,

• We also thank the following team members:

<table>
<thead>
<tr>
<th>Alejandro Lopez Ortega</th>
<th>James E. Polk</th>
<th>Maria Choi</th>
<th>Scott J. Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin A. Jorns</td>
<td>James M. Szelagowski</td>
<td>Matthew T. Daugherty</td>
<td>Terrell J. Jensen</td>
</tr>
<tr>
<td>Christopher M. Griffiths</td>
<td>Jason Frieman</td>
<td>Michael S. McVetta</td>
<td>Thomas W. Haag</td>
</tr>
<tr>
<td>Dale A. Robinson</td>
<td>John T. Yim</td>
<td>Michael J. Sekerak</td>
<td>Thomas A. Ralys</td>
</tr>
<tr>
<td>Derek Patterson</td>
<td>Jonathan Mackey</td>
<td>Michael W. Swiatek</td>
<td>Timothy Gray</td>
</tr>
<tr>
<td>Gabriel Benavides</td>
<td>Joshua Gibson</td>
<td>Nick M. Lalli</td>
<td>Timothy R. Sarver-Verhey</td>
</tr>
<tr>
<td>George P. Jacynycz</td>
<td>Kevin L. Blake</td>
<td>Peter Y. Peterson</td>
<td></td>
</tr>
<tr>
<td>George J. Williams</td>
<td>Lauren K. Clayman</td>
<td>Richard Polak</td>
<td></td>
</tr>
<tr>
<td>Ioannis G. Mikellides</td>
<td>Li C. Chang</td>
<td>Richard G. Senyitko</td>
<td></td>
</tr>
<tr>
<td>James H. Gilland</td>
<td>Luis Pinero</td>
<td>Robert Lobbia</td>
<td></td>
</tr>
<tr>
<td>James L. Myers</td>
<td>Luke Sorrelle</td>
<td>Ryan W. Conversano</td>
<td></td>
</tr>
</tbody>
</table>