First Measurement of the Cross-Correlation of CMB Lensing and Galaxy Lensing

We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 3σ, which corresponds to a 16\% constraint on the amplitude of density fluctuations at redshifts $z\sim 0.9$. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.

I. INTRODUCTION

The cosmic web of matter gravitationally deflects the paths of photons as they traverse the Universe – an effect known as gravitational lensing. In the case of light from the cosmic microwave background (CMB), these lensing
deflections imprint information about the density fluctuations between the primordial Universe at $z \sim 1100$ and the present day onto the observed CMB sky, and in doing so modify the statistical properties of the CMB anisotropies. Similarly, cosmological information about the lower-redshift Universe can be extracted from the lensing-induced distortion of the shapes of galaxies, an effect referred to as weak lensing. In both cases, precise measurements of the small magnification and shear effects can be used to reconstruct the convergence field, which is a direct measure of the projected matter density δ.

Previous analyses have demonstrated the sensitivity of CMB lensing to the large-scale dark matter distribution through cross-correlations with sources that trace the same structure in the low-redshift Universe. To date, several galaxy catalogs, the cosmic infrared background, and quasars have been shown to be well-correlated with the CMB lensing convergence field κ. Here, we report the first cross-correlation between CMB lensing and galaxy lensing through a measurement of the lensing-lensing cross power spectrum. The detection is a direct measure of the mass distribution localized to intermediate redshifts solely through the gravitational effects of lensing. It is also nearly insensitive to residual systematics that are independent in both data sets, providing a robust test of the ΛCDM model on the largest cosmic scales.

Lensing measurements are sensitive to both the expansion and growth histories of the Universe Ω, Ω_m. Separately, measurements of CMB lensing $\Omega_m\delta(z)$ and galaxy lensing $\Omega_m\delta(z)$ have already contributed to strong constraints on the amplitude of matter fluctuations and the nature of dark energy. Correlating weak lensing effects on the CMB and galaxies can break previous parameter degeneracies and offer powerful constraints on the evolution and nature of dark energy, the amplitude of matter fluctuations, and the sum of neutrino masses $\Omega_m\delta(z)$.

Furthermore, the cross-correlation will serve as an important calibrator of systematics and biases in optical and infrared cosmic shear experiments, which could otherwise limit future surveys.

Measurements of CMB lensing have matured quickly in recent years. Its effects were first detected in cross-correlation using radio-selected galaxy catalogs with WMAP data and in auto-correlation using Atacama Cosmology Telescope (ACT) data. Subsequent improvements to the lensing power spectrum were reported by the South Pole Telescope and the Planck collaboration. Further advances in CMB lensing data are expected from multiple experiments in the near future. Noting the anticipated enhancements of upcoming wide-field cosmic shear surveys, this work represents a first step in the application of a future, powerful tool for precision cosmology.

The measurement of the lensing-lensing cross power spectrum presented here uses CMB data from the Atacama Cosmology Telescope and optical lensing data from the Canada-France-Hawaii Telescope (CFHT) Stripe 82 Survey. The paper is structured as follows. Section III presents a brief overview of the theoretical expectation for the cross-correlation. The lensing data used in this analysis are described in section III and the analysis methods are detailed in section IV. The results of the measurement, as well as null tests and systematic checks, are outlined in section V, and we conclude in section VI.

II. THEORETICAL BACKGROUND

The effects of cosmological gravitational lensing are encoded in the convergence field κ, which can be expressed as a weighted projection of the matter overdensity δ,

$$\kappa(\hat{\mathbf{n}}) = \int_0^\infty dz W^\kappa(z) \delta(\chi(z)\hat{\mathbf{n}}, z).$$

Assuming a flat universe, the lensing kernel W^κ is

$$W^\kappa(z) = \frac{3}{2} \Omega_m H_0^2 \int_0^\infty dz_s p_s(z_s) \frac{\chi(z_s) - \chi(z)}{\chi(z_s)},$$

where $p_s(z)$ is the normalized redshift distribution of source galaxies, $\chi(z)$ is the comoving distance to redshift z, $\hat{\mathbf{n}}$ is the direction on the sky, and H_0 and Ω_m are the present-day values of the Hubble and matter density parameters, respectively. We denote the kernel for the weak lensing of a source galaxy population with a redshift distribution $p_s(z) = dn/dz$ as W^κ_{gal}.

For lensing of the CMB, the source redshift distribution can be approximated as $p_s(z) \simeq \delta_D(z - z_s)$, where $z_s \simeq 1090$ is the redshift of the surface of last scattering and δ_D is the Dirac delta function. This yields the following kernel [1]:

$$W^\kappa_{CMB}(z) = \frac{3}{2} \Omega_m H_0^2 \int_0^\infty dz_s p_s(z_s) \frac{\chi(z_s) - \chi(z)}{\chi(z_s)}.$$

Using the Limber approximation, the cross power spectrum of the convergence fields due to CMB lensing and galaxy lensing can be computed to good precision as

$$C^\kappa_{\ell_{gal}}(k, z) \equiv \int_0^\infty \frac{dz}{\chi(z)} H(z) P(k, z) W^\kappa_{CMB} W^\kappa_{gal} P \left(k = \frac{\ell}{\chi}, z \right),$$

where $P(k, z)$ is the matter power spectrum evaluated at wavenumber k and redshift z. The degree of cross-correlation between the two convergence fields is determined by the overlap of the two kernels, weighted by the matter power spectrum. For comparison, the CMB lensing kernel W^κ_{CMB} and the galaxy lensing kernel W^κ_{gal} for the CS82 source population used in this work are shown in Fig. 1. The mean redshift of the product of W^κ_{gal}
and $W^{\kappa\text{CMB}}$ is $z \sim 0.9$, illustrating that the cross power spectrum is sensitive to the amplitude of structure at intermediate redshifts.

III. CMB AND GALAXY LENSING DATA

A. ACT CMB Lensing Data

ACT is a 6-meter telescope located in the Atacama desert in Chile [36–38]. The CMB temperature maps used in this work are made from observations taken during 2008 - 2010 in the 148 GHz frequency channel and have been calibrated to 2% accuracy as in [39]. The maps are centered on the celestial equator with a width of 3 degrees in declination and 108 degrees in right ascension and are identical to those used in [12].

The lensing convergence fields are reconstructed from the CMB temperature maps using the minimum variance quadratic estimator of [40] following the procedure used in [27]. The lensing deflection induces correlations in the Fourier modes of the previously uncorrelated, unlensed CMB. The lensing convergence is estimated from these Fourier correlations with a quadratic estimator:

$$\hat{\kappa}(\mathbf{L}) = N(\mathbf{L}) \int d^2l \; f(\mathbf{L},l)T(l)T(\mathbf{L} - l), \quad (5)$$

where l and \mathbf{L} are Fourier space coordinates, N is the normalization function, T is the temperature field, and f is a weighting function that maximizes the signal-to-noise ratio of the reconstructed convergence (see [40] for details). In the lensing reconstruction, we filter out temperature modes with a low signal-to-noise ratio, specifically those modes below $\ell \leq 500$ and above $\ell = 4000$. This filtering does not prevent the measurement of low-ℓ lensing modes, as the lensing signal at a given scale ℓ is obtained from temperature modes separated by ℓ (see Eq. [5]). The maximum ℓ of included temperature modes is the only difference between the lensing maps used in this work and those in [12].

The final normalization is obtained in a two step process, as in [12]. A first-order approximation for the normalization is computed from the data power spectrum, with an additional, small correction factor (of order 10%) applied from Monte Carlo simulations, which are designed to match both the signal and noise properties of the ACT data. Finally, we obtain a simulated mean field map $\langle \hat{\kappa} \rangle$ from 480 Monte Carlo realizations of reconstructed CMB lensing convergence maps and subtract this mean field from the reconstructed ACT lensing maps. The simulated mean field is non-zero due to noise and finite-map effects giving rise to a small ($\sim 5\%$) artificial lensing signal, which must be subtracted. Note that this set of 480 Monte Carlo realizations is also used to estimate error bars on the final cross power spectrum measurement, as described in section V.

B. CS82 Lensing Data

1. Data

The Canada-France-Hawaii Telescope Stripe 82 Survey is an i'-band survey of the so-called Stripe 82 region of sky along the celestial equator [41]. The survey was designed with the goal of covering a large fraction of Stripe 82 with high quality i'-band imaging suitable for weak lensing measurements. With this goal in mind, the CS82 survey was conducted under excellent seeing conditions: the Point Spread Function (PSF) for CS82 varies between 0.4" and 0.8" over the entire survey with a median seeing of 0.6". In total, CS82 comprises 173 MegaCam i'-band images, with each image roughly one square degree in area with a pixel size of 0.187 arcseconds. The area covered by the survey is 160 degrees2 (129.2 degrees2 after masking out bright stars and other artifacts). The completeness magnitude is $i' \sim 24.1$ (AB magnitude, 5σ in a 2" aperture). Image processing is largely based on the procedures presented in [42, 43]. Weak lensing shear catalogs were constructed using the state-of-the-art weak lensing pipeline developed by the CFHTLenS collaboration which employs the lensfit shape measurement algorithm [44, 45]. We refer to these publications for more in-depth details on the shear measurement pipeline.

Following [44] and [45], source galaxies are selected to have $w > 0$ and FITSCCLASS = 0. Here, w represents an inverse variance weight accorded to each source galaxy by lensfit, and FITSCCLASS is a flag to remove stars but also to select galaxies with well-measured shapes (see details in [44]). After these cuts, the CS82 source galaxy density is 15.8 galaxies arcmin$^{-2}$ and the effective weighted galaxy number density (see equation 1 in [45]) is 12.3 galaxies arcmin$^{-2}$. Note that these numbers do not include any cuts on photometric redshift quality since for the purposes of this paper, we only need to know the
CS82 source galaxy redshift distribution (see following section). We derive the multiplicative shear calibration factor \(m \) in the same manner as [44]. The multiplicative shear measurement bias is then equal to \(1 + m \).

Our reduction pipeline includes an automated masking routine to detect artifacts on an image-by-image basis and to mask out bright stars [43]. Each mask is manually inspected and modified when necessary (for example, to mask out faint satellite trails) to create a final set of masks. These high-resolution masks are then re-binned to a resolution of 1 arcminute and combined into a larger single mosaic mask for the full CS82 data.

2. Source redshift distribution

As the CS82 \(i' \)-band imaging is deeper than the overlapping multi-color co-add data from SDSS [46] we cannot estimate a photometric redshift for each galaxy in our source catalog. However, for the purposes of this work, we do not require a photometric redshift estimate for each source galaxy. Instead, only the source redshift distribution is needed to predict the amplitude of the cross-correlation. We estimate this redshift distribution using the 30-band COSMOS photometric redshift catalog [47]. We select a random sample of COSMOS galaxies such that the COSMOS sample \(i' \)-band magnitude distribution matches our source catalog. We then fit the \(dn/dz \) from this matched sample, weighting each galaxy by \(w \), the inverse variance weight accorded to each CS82 source galaxy. By using this weight, we account for the increase in the shape measurement noise at faint magnitudes (see equation 8 in [43]). Adopting the functional form from [48], the weighted source redshift distribution is given by:

\[
\frac{dn}{dz} = A \frac{z^a + z^{ab}}{z^a + c},
\]

with \(a = 0.531, b = 7.810, c = 0.517, \) and \(A = 0.688 \). The source redshift distribution from the matched COSMOS sample is shown in Fig. 2.

There are uncertainties in our \(dn/dz \) estimate due to sample variance in the COSMOS data, errors in the COSMOS photometric redshifts, and the assumed parametric form for \(dn/dz \). Estimating these uncertainties is a non-trivial task and is beyond the scope of this paper, as the main goal of this work is simply to present the detection of the cross-correlation. Nonetheless, to give some sense of the effects of uncertainty in \(dn/dz \), we investigate how the predicted amplitude of the cross-correlation varies when we shift the peak and the high-redshift tail of \(dn/dz \). For these tests, we shift the peak of \(dn/dz \) by \(\Delta z = \pm 0.1 \) and shift the high-redshift tail of \(dn/dz \) by varying the parameter \(b \) by \(\pm 30\% \). These four test cases are shown in the right panel of Fig. 2. Again, we stress that these tests are not necessarily designed to represent the true underlying uncertainty in our \(dn/dz \) estimate (which is non-trivial to compute) – only to give some idea of how variations in \(dn/dz \) can affect the predicted amplitude of the cross-correlation.

When computing the theoretical cross power spectrum with fixed cosmological parameters using Eq. 3 we find that these \(dn/dz \) variations lead to changes of order 10 – 20% in the amplitude of the theory curve. The largest amplitude change occurs when shifting the tail of the source distribution to higher redshift, with the other variations leading to comparable changes. As the CMB lensing kernel \(W_{\text{CMB}} \) peaks at \(z \approx 2 \) with a broad tail to higher redshift, the degree of cross-correlation is quite sensitive to the tail of the source galaxy redshift distribution. Clearly, the interpretation of our results depends on the assumed \(dn/dz \). In general, the high-redshift tail of the source redshift distribution is notoriously difficult to measure from photometric surveys. This is due in part to the Lyman-Balmer break degeneracy in photometric redshift codes for galaxies at \(z \gtrsim 1.5 \) (which requires difficult to obtain deep near-infrared or \(U \)-band imaging to be resolved), but also because high-redshift galaxies are faint and thus have more unreliable photometric redshifts. In conclusion, it is clear that future measurements of this kind will need to pay particular attention to systematics associated with the source redshift distribution.

3. CS82 shear maps

We create a series of maps for CS82 that follow a regular grid with a pixel size of 1 arcminute and that are matched to the mosaic mask map described previously. To create shear maps, we closely follow the procedure outlined in [49] to account for the multiplicative shear measurement bias \((1 + m)\) and the weighting \(w \). An unnormalized ellipticity map \(M_{e1} \) is constructed for the \(e_1 \) component of the ellipticity by summing \(e_1 \) over all source galaxies within in each pixel \((x, y)\):

\[
M_{e1}(x, y) = \sum_i w_i e_{1,i},
\]

where \(w_i \) represents the inverse variance weight associated with each galaxy [44]. In addition, we compute a normalization map as

\[
N(x, y) = \sum_i w_i (1 + m_i),
\]

where \(m_i \) is the shear calibration factor for galaxy \(i \). Typically, a \(\gamma_1 \) shear map is then computed as \(M_{\gamma_1}(x, y) = M_{e1}(x, y)/N(x, y) \) (and similarly for \(\gamma_2 \)). Here, however, we choose to separate \(M_{e1}(x, y) \) and \(N(x, y) \) and to treat \(N \) as part of the window function (see section IV.A.1). This ensures a proper treatment of pixels for which \(N(x, y) = 0 \).

In a similar fashion, we also compute the following maps:
FIG. 2. Redshift distribution of CS82 source galaxies. Left: redshift distribution for a matched sample of galaxies from the COSMOS survey. The blue solid line indicates our fit to the COSMOS matched sample. Right: we test how the amplitude of the theoretical lensing-lensing cross power spectrum changes when we vary the peak of the dn/dz (red, dashed lines) and the high-redshift tail of the distribution (orange, dash-dotted lines). These variations in the dn/dz lead to changes of order $10^{-20\%}$ in the amplitude of the theoretical lensing-lensing cross power spectrum. Accurate estimates of dn/dz will be crucial for this kind of cross-correlation in the future.

IV. METHODS

A. Power Spectrum Estimation

The cross-correlation of the ACT CMB lensing and CS82 galaxy lensing convergence fields is computed in Fourier space. The choice to reconstruct the correlation in Fourier space rather than real space was made in order to limit correlations between different data bins, which can complicate the interpretation of the final measurement. Furthermore, this method minimizes the total number of Fourier transforms needed, which reduces noise due to windowing and edge effects. In order to obtain an unbiased estimate of the cross spectrum, we follow a procedure similar to the steps outlined in previous ACT power spectrum analyses \[12, 50\], which properly account for the coupling of Fourier modes induced by filtering and windowing effects. The notation and terminology in this section closely follows that of these previous ACT analyses.

1. **The Data Window**

First, the real space ACT convergence map is repixilated to match the resolution (1 arcminute) of the CS82 data. Then, the ACT data and CS82 ellipticity maps are spatially divided into two noncontiguous patches on which the cross spectrum estimation is computed separately. The two patches are divided at zero right ascension due to a coincidental discontinuity in the CS82 imaging at this location. This divides the original map into two roughly equal area patches. We denote the separate patches with Greek indices, such that patch α of the two CS82 ellipticity maps at position $\theta = (x, y)$ is...
denoted as $M^\alpha_{\text{gal}}(x,y)$ and $M^\alpha_{\text{CMB}}(x,y)$. Similarly, patch α of the repixelized ACT convergence map is denoted as $M^\alpha_{\text{ACT}}(x,y)$.

Both the CS82 and ACT data patches are multiplied in real space by a tapering function and the CS82 mask map, which masks out image artifacts and bright point sources. The tapering function minimizes noise introduced by the patch edges in Fourier space. It is generated by convolving a map that is unity in the center and zero over 10 pixels at the edges with a Gaussian of full width at half maximum of $5'$. Here, we are using the unnormalized CS82 ellipticity maps (as given in Eq. 7). Thus, to recover the correct final normalization, we treat the effective window function for the CS82 data as the product of three components – the tapering function, the CS82 mask, and the normalization map N (as given in Eq. 8).

Lastly, in order to match the windows of the CS82 and ACT patches, we multiply the ACT data by the normalization map N. In the following discussion, the window function is denoted by K^α and the windowed data patches are denoted as \tilde{M}^α_i, where $i \in \{e1, e2, \kappa_{\text{CMB}}\}$.

2. Galaxy Lensing Convergence Reconstruction

We reconstruct the CS82 convergence field in Fourier space from the windowed ellipticity patches, following the prescription outlined in [51]. The galaxy lensing convergence field in Fourier space $\tilde{M}^\alpha_{\text{gal}}(\ell)$ is given by

$$\tilde{M}^\alpha_{\text{gal}}(\ell) = F_\ell \left[\tilde{M}^\alpha_{\text{e1}}(\ell) \frac{\ell_x^2 - \ell_y^2}{\ell^2} + \tilde{M}^\alpha_{\text{e2}}(\ell) \frac{2\ell_x \ell_y}{\ell^2} \right],$$

where the wavevector $\ell = (\ell_x, \ell_y) = 2\pi/\theta$ is defined as the two-dimensional Fourier analog of θ, $\ell^2 = \ell_x^2 + \ell_y^2$, and F_ℓ is a Gaussian smoothing filter of full width at half maximum of $2'$.

3. Mode-coupling

A 2D pseudo-spectrum is computed from the windowed convergence fields as

$$\tilde{C}^\kappa_{\text{CMBgal}}(\ell) = \Re \left[\tilde{M}^\ast_{\kappa_{\text{CMB}}}(\ell) \tilde{M}_{\kappa_{\text{gal}}}(\ell) \right],$$

where the patch index has been suppressed for clarity. The 1D binned spectrum \hat{C}_b is computed by averaging the 2D spectrum in annular bins

$$\hat{C}^\kappa_{\text{CMBgal}}(\ell) = \sum_{\ell} P_{\ell b} \tilde{C}^\kappa_{\text{CMBgal}}(\ell),$$

where $P_{\ell b}$ is the binning matrix, which is defined to be zero when ℓ is outside the annulus defined by bin index b and unity otherwise.

Noting that the windowing operation in real space corresponds to a convolution in Fourier space and using Eqs. 9 to 11 we can express the binned 1D pseudo-spectrum \hat{C}_b in terms of the underlying spectrum C_ℓ as

$$\hat{C}^\kappa_{\text{CMBgal}}(\ell) = \sum_{\ell, \ell'} P_{\ell b} |K(\ell - \ell')|^2 F_{\ell'} C^\kappa_{\text{CMBgal}}(\ell'),$$

where K is the three-component window function discussed previously. We relate this quantity to a binned version of the true spectrum C_b via an inverse binning operator Q_{tb}, which is unity when $\ell \in b$ and zero otherwise,

$$\hat{C}^\kappa_{\text{CMBgal}}(\ell) = \sum_{\ell, \ell', b'} P_{\ell b} |K(\ell - \ell')|^2 F_{\ell'} Q_{\ell b} C^\kappa_{\text{CMBgal}}(\ell'),$$

where $M_{bb'}$ is the mode-coupling matrix, which is well-behaved and stable to inversion. Finally, we define the unbiased estimator of the power spectrum (denoted by a circumflex) as

$$\hat{C}^\kappa_{\text{CMBgal}}(\ell) = \sum_{b'} M^{-1}_{bb'} \hat{C}^\kappa_{\text{CMBgal}}(\ell').$$

We use Eq. 14 to estimate the cross power spectrum for each patch and compute the final cross power spectrum as the mean of the spectra from the two individual patches.

B. Pipeline Validation

We use simulated galaxy lensing maps to validate the power spectrum analysis steps described in the previous section. The simulated maps are constructed using the shear signal from the N-body simulations described in [52]. Projected shear and convergence “tiles” are produced for 25 separate lines of sight in the simulation. Each tile covers an area of 12.8 deg2 and has a pixel size of 0.21'. For simplicity, we use shear and convergence maps constructed using source galaxies at a single redshift of $z = 0.73$. As the purpose of the simulation maps is only to verify the analysis pipeline, a more realistic dn/dz is not required.

We repixelize the 25 simulated tiles to match the pixel size of the CS82 data (1 arcminute) and use these tiles to construct a map with equal size and area to the map used in the data analysis. We then multiply the shear maps by the CS82 mask and normalization maps, reconstruct the convergence in Fourier space using Eq. 9 and estimate the convergence auto power spectrum using the analysis steps outlined in the previous section. Fig. 3 shows the results of this calculation. The gray solid line marks the input convergence power spectrum, while the recovered spectrum is overlaid as black points. The analysis pipeline accurately recovers the input power spectrum, within measured errors.
We define a parameter A for the amplitude of the cross spectrum relative to the two models considered here, defined such that $A = 1$ corresponds to the fiducial model. We compute the amplitude likelihood for both the Planck and WMAP models, assuming no uncertainties in the CS82 source distribution. Relative to the Planck fiducial model, we obtain a best-fit amplitude $A_{\text{Planck}} = 0.61 \pm 0.19$, with $\chi^2 = 0.63$ and $\chi^2/\nu = 0.16$ for $\nu = 4$ degrees of freedom. Relative to the WMAP9 model, we measure an amplitude $A_{\text{WMAP}} = 0.74 \pm 0.23$, with $\chi^2 = 0.56$ and $\chi^2/\nu = 0.14$. The significance is computed as the difference between the chi-squared values of the null line ($A = 0$) and the best-fit theoretical spectrum: $\Delta \chi^2 = \chi^2_{\text{null}} - \chi^2_{\text{theory}}$. With a measured value of $\chi^2_{\text{null}} = 10.83$, the best-fit theoretical model is favored over the null hypothesis with a significance of 3.2σ (for both the Planck and WMAP9 models).

Our data have unusually low values for χ^2_{theory}. Given independent normal errors on each measured data point, a chi-squared as small or smaller than the measured values for χ^2_{theory} is expected about 3.5% of the time. While this suggests a possible overestimate of the error bars, our errors computed from Monte Carlo simulations are consistent with an analytical model, and we conclude that the closeness of the data points to the best-fit model is merely a fortunate coincidence. The null significance test for detection of a signal, χ^2_{null} (which is a weaker statistical test than the difference in χ^2, gives a lower detection significance of 2σ: around 5% of the time random deviates from the null will give a χ^2_{null} larger than observed. This inconsistency with the detection significance based on the χ^2 difference is due to the unusually low value of χ^2_{null}. However, both the Aikake Information Criterion and the Bayes Information Criterion (e.g., [56]) strongly prefer the best-fit model over the null signal, affirming the conclusion of a statistically significant detection at a level exceeding 3σ.

Since the amplitude of the cross spectrum scales as the square of the amplitude of density fluctuations, this measurement corresponds to a \sim16% constraint on the amplitude of structure at intermediate redshifts, $z \sim 0.9$, which corresponds to the mean redshift of the product of the CMB lensing and galaxy lensing kernels (see Fig. 4). However, given the possible uncertainties in the CS82 source galaxy redshift distribution, we do not offer a more detailed cosmological interpretation of this measurement, as further understanding of the dn/dz uncertainties is required before placing robust cosmological constraints.
FIG. 4. The CMB lensing - galaxy lensing convergence cross power spectrum (red points), measured using ACT and CS82 data. Error bars are computed using Monte Carlo methods (see text), and the significance of the measurement is 3.2σ. The dashed and solid black lines show the expected power spectra assuming the Planck + lensing + WP + highL and WMAP9 + eCMB cosmological models, respectively. The theoretical spectra shown correspond to $A = 1$, and relative to these models, the best-fit amplitudes to our data are $A^{\text{Planck}} = 0.61 \pm 0.19$ and $A^{\text{WMAP}} = 0.74 \pm 0.23$.

B. Null Tests

We verify our pipeline and measured cross power spectrum with a series of null tests. The first test uses the 480 Monte Carlo realizations of simulated CMB lensing maps described previously. We compute the cross power spectrum of the true CS82 convergence field with these realizations. The mean of these 480 spectra is shown in the top panel of Fig. 5. As expected, the result is consistent with the null hypothesis, with $\chi^2 = 10.0$ for five degrees of freedom; the probability of random deviations with the same covariances to exceed this chi-squared is 7.4%. The second test uses 500 realizations of randomized galaxy lensing shear maps (described in section III), and we compute the mean cross power spectrum between the true ACT convergence field and these random maps. Shown in the center panel of Fig. 5, this mean correlation is also consistent with zero, with $\chi^2 = 5.2$ and a probability to exceed of 39%. Note that the set of 500 randomized shear maps do not contain a cosmological shear signal and thus, can only be used as a null test rather than to estimate error bars for the final cross spectrum measurement. Finally, we create 58 “shuffled” ACT maps by shifting the true ACT data in intervals of 0.75° along the right ascension direction. The mean of the cross-correlation between these shuffled maps and the CS82 convergence data is shown in the lower panel of Fig. 5. This mean correlation is also consistent with null signal, with $\chi^2 = 6.1$ and a probability to exceed of 30%. The error bars for each of these measurements are computed using the full covariance matrix as determined from the Monte Carlo realizations, as was done for the true data.

We also perform two specific tests of the CS82 shear data. We compute the cross power spectrum using the same methods outlined in section IV, but replace the CS82 ellipticity data with 1) the B-mode ellipticity maps $M_{b\text{mode1/2}}$ and 2) the PSF ellipticity maps $M_{\text{psf1/2}}$. The B-mode ellipticity is obtained using the transformation (e_1, e_2) to $(-e_2, e_1)$, and in the absence of systematics, should vanish. The cross power spectrum between the ACT data and the B-mode convergence data is shown in the top panel of Fig. 6. As expected, the measurement is
consistent with null signal, with $\chi^2 = 6.3$ for five degrees of freedom, corresponding to a 27% probability that the chi-squared of random noise would exceed the measured value. The bottom panel of Fig. 6 shows the correlation between the ACT data and the PSF data, and the result is consistent with zero, with $\chi^2 = 4.6$ and a probability to exceed of 46%. The error bars for both spectra are computed from Monte Carlo estimates, as before.

VI. CONCLUSIONS

We have cross-correlated CMB lensing and galaxy lensing convergence maps and measured the lensing-lensing cross power spectrum for the first time at 3.2σ significance. This cross-power is a direct gravitational measurement of the distribution of mass at redshifts ~ 0.9. Ignoring uncertainties in the CS82 dn/dz, the measurement constrains the amplitude of structure to an uncertainty of $\sim 16\%$, although errors in the dn/dz must be considered for more precise cosmological constraints. Our method is remarkably robust to instrumental and astrophysical systematic errors. It is performed with a cross-correlation of mass measurements relying on completely different measurement techniques and photon wavelengths, which few systematics can survive. Despite the moderate detection significance, this robustness makes the first measurement of this cross-correlation signal a valuable confirmation of the ΛCDM model for large-scale structure at intermediate redshifts.

In just the next few years, measurements of lensing-lensing cross-correlations are expected to increase in signal-to-noise by more than an order of magnitude [28-32]. CMB lensing-galaxy lensing cross-correlations have the potential to greatly contribute to cosmology in two main ways. First, they can serve as a calibrator of instrumental systematics, which may potentially limit future optical and infrared weak lensing surveys. By adding information from lensing-lensing cross-correlations to weak lensing power spectra, additive and multiplicative biases can be precisely constrained, which will allow future weak lensing surveys to reach their full cosmological potential (see e.g., [22, 23]). Second, they will serve as an independent, robust measurement of the amplitude of structure at intermediate redshifts. When combined with probes at higher redshift (e.g., CMB lensing) and lower redshift (e.g., weak lensing), lensing-lensing cross-correlations will help measure the growth of structure across a wide range of redshifts. This, in turn, will allow for powerful constraints on the sum of neutrino masses and the properties of dark energy. This work thus demonstrates an important proof of concept of an exciting new cosmological probe.

ACKNOWLEDGMENTS

We thank the CFHTLenS team for their pipeline development and verification upon which much of this survey pipeline was built. We also thank Jeff Newman and Peter Freeman for helpful conversations about statistical analysis. This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, as well as awards PHY-0855887 and PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronómico Atacama in northern Chile under the auspices of the Comisión Nacional de Investigación Científica y Tecnológica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund – Research Excellence; and the University of Toronto. This work was based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by
the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. The Brazilian partnership on CFHT is managed by the Laboratório Nacional de Astronomia (LNA). This work made use of the CHE cluster, managed and funded by ICRA/CBPF/MCTI, with financial support from FINEP and FAPERJ. We thank the support of the Laboratório Interinstitucional de e-Astronomia (LIneA). NH is supported by the National Science Foundation Graduate Research Fellowship under grant number DGE-1106400 and the Berkeley Fellowship for Graduate Study. TE is supported by the Deutsche Forschungsgemeinschaft through project ER 327/3-1 and by the Transregional Collaborative Research Centre TR 33 “The Dark Universe”. CH acknowledges support from the European Research Council under the EC FP7 grant number 240185. HYS acknowledges the support from Marie-Curie International Incoming Fellowship (FP7-PEOPLE-2012-IIF/327561), Swiss National Science Foundation (SNSF) and NSFC of China under grants 11103011. This work was supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. HI is supported by the Marie Curie IOF 252760, by a CITA National Fellowship, and the DFG grant HI 1495/2-1. JPK acknowledges support from the ERC advanced grant LIDA and from CNRS. We acknowledge support from NSF Grant 1066293 and thank the Aspen Center for Physics for hospitality during the writing of this paper.

