Getting SiC Power Devices Off the Ground: Design, Testing, and Overcoming Radiation Threats

Jean-Marie Lauenstein
NASA Goddard Space Flight Center (GSFC)

Acknowledgment:
This work was sponsored by:
NASA Office of Safety & Mission Assurance
in collaboration with:
NASA Space Technology Mission Directorate
Abbreviations & Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCR</td>
<td>Galactic Cosmic Ray</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain Current</td>
</tr>
<tr>
<td>I_G</td>
<td>Gate Current</td>
</tr>
<tr>
<td>I_R</td>
<td>Reverse-Bias Leakage Current</td>
</tr>
<tr>
<td>ICSCRM</td>
<td>International Conference on Silicon Carbide and Related Materials</td>
</tr>
<tr>
<td>JFET</td>
<td>Junction Field Effect Transistor</td>
</tr>
<tr>
<td>LBNL</td>
<td>Lawrence Berkeley National Laboratory cyclotron facility</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>RHA</td>
<td>Radiation Hardness Assurance</td>
</tr>
<tr>
<td>RHBD</td>
<td>Radiation Hardened By Design</td>
</tr>
<tr>
<td>SEB</td>
<td>Single-Event Burnout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEE</td>
<td>Single-Event Effect</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon Carbide</td>
</tr>
<tr>
<td>SOA</td>
<td>Safe Operating Area</td>
</tr>
<tr>
<td>TAMU</td>
<td>Texas A&M University cyclotron facility</td>
</tr>
<tr>
<td>TID</td>
<td>Total Ionizing Dose</td>
</tr>
<tr>
<td>VDMOS</td>
<td>Vertical Double-diffused MOSFET</td>
</tr>
<tr>
<td>V_{DS}</td>
<td>Drain-Source Voltage</td>
</tr>
<tr>
<td>V_{GS}</td>
<td>Gate-Source Voltage</td>
</tr>
<tr>
<td>V_R</td>
<td>Blocking Voltage</td>
</tr>
</tbody>
</table>

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
Outline

• **Part 1: Design**
 – Understanding single-event effects susceptibility of SiC power devices through heavy-ion test data on different device types

• **Part 2: Testing**
 – Additional findings from heavy-ion test conditions

• **Part 3: Overcoming Radiation Threats**
 – Putting design insights into action: radiation hardening of a 1200 V SiC MOSFET
 – Radiation Hardness Assurance conclusions

Solar Electric Propulsion
image courtesy of NASA

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
SEE radiation requirements are derived in part by the environment specified as a function of linear energy transfer (LET) in silicon; SiC test results therefore are in LET(Si)
PART 1: DESIGN
SINGLE EVENT EFFECTS: LEARNING FROM DIODE DESIGNS
Schottky Diode Effects: Degradation

Onset V_R for degradation is similar for 650 V – 1700 V Schottky diodes: Electric field may not be a primary factor.

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
Onset V_R for degradation is higher for PIN diodes: The Schottky contact may contribute an additional mechanism.

Degradation:
- D1_650V
- D2_1200V
- D4_1700V
- PN5_1200V
- PN6_3300V

Increasing $I_R \propto$ ion fluence

No Measurable Effect

Increasing I_R during irradiation

Degraded I_R during irradiation

PIN Diodes

Reverse/Blocking Voltage

Q Collection

Measurement Results
Schottky Diode Effects: SEB

650 V – 1700 V Schottkys show SEB at similar fraction of rated V_R: Electric field dependent

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
Schottky vs. PIN Diode Effects: SEB

SEB: sudden high-I_R event
Increasing $I_R \propto$ ion fluence
Q Collection

Reverse/Blocking Voltage

Catastrophic Failure: Inability to block V_R
Degraded I_R
No Measurable Effect

During Irradiation
Post Run

Measurement Results

No difference between Schottky and PiN diodes for normalized SEB onset voltage

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
SINGLE EVENT EFFECTS: LEARNING FROM JFET DESIGNS
JFET Effects as a Function of V_{DS} at Fixed off V_{GS}: Degradation

Measurement Results

Degradation in normally-on and normally-off JFETs in this study is always drain-gate leakage, suggesting a trench design.
JFET Effects as a Function of V_{DS} at Fixed off V_{GS}: Degradation

Measurement Results

- During Irradiation
 - Increasing I_{DG}
 - $I_D = I_G$
 - Q Collection
 - No Measurable Effect

- Post Run
 - Degraded leakage
 - I_D & I_G

Columns: no effects

Error bars: Onset of degradation or SEB

Onset V_{DS} for degradation is similar for normally-on and (non-cascaded) normally–off JFETs

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
JFET Effects as a Function of V_{DS} at Fixed off V_{GS}: Degradation

Measurement Results

1200 V & 1700 V JFETs have similar normalized onset V_{DS}: Greater field dependence of degradation mechanism vs. diodes (due to gate involvement or to lower LET?)

Drain-Source Voltage

- Increasing $I_{DG} \propto$ ion fluence:
 - $I_D = I_G$
 - Q Collection

- Degraded leakage
- No Measurable Effect

Max passing V_{DS}

Error bars: Onset of Degradation or SEB

Graph

- J1-J3 $V_{GS} = 0$ V: J4 $V_{GS} = -15$ V

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
JFET Effects as a Function of V_{DS} at Fixed off V_{GS}: SEB

SEB: sudden high-I event

Catastrophic Failure: $BVDSS \ll $ rated

Increasing I_{DG}

\propto ion fluence:

$I_D = I_G$

Degraded I_D & I_G

Q Collection

No Measurable Effect

During Irradiation

Post Run

Measurement Results

1200 V – 1700 V JFETs show SEB at similar fraction of rated V_{DS}

Normally-on similar to normally-off JFET susceptibility

Max V_R no immediate SEB

Error bars: Onset of SEB

J4 $V_{GS} = -15$ V;
J1-J3 $V_{GS} = 0$ V

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
SINGLE EVENT EFFECTS: LEARNING FROM MOSFET DESIGNS
MOSFET Effects as a Function of V_{DS} at $V_{GS} = 0$ V: Latent Gate Damage

Measurement Results

- **No latent damage to gate from low LET/light ions;**
- **Onset is independent of MOSFET voltage rating at higher LETs**

Graphical Data
- Green = V_{DS} range for which only latent damage occurs
- Grey = no ion effects

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
MOSFET Effects as a Function of V_{DS} at $V_{GS} = 0$ V: Degradation During Beam Run

Not all MOSFETs exhibit drain-gate leakage current degradation: Design techniques may eliminate this vulnerability

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
MOSFET Effects as a Function of V_{DS} at $V_{GS} = 0$ V: Degradation During Beam Run

I_{DS} degradation least influenced by electric field and ion LET: linked to material properties??

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
MOSFET Effects as a Function of V_{DS} at $V_{GS} = 0$ V: SEB

- **SEB:** sudden high-I event
 - I_{DG}, I_{DS}
 - $\Delta I_D >> \Delta I_G$
 - I_{DG}
 - $\Delta I_D = \Delta I_G$

- **Catastrophic Failure:**
 - $BV_{DSS} < 2$ V
 - I_{DSS}
 - or Failed I_{GSS}
 - I_{GSS}, I_{DSS}
 - Failed I_{GSS}

- **Q Collection**
 - No Measurable Effect

Measurement Results

- **Drain-Source Voltage**
- **Q Collection**

SEB vulnerability at LET(Si) < 1 MeV-cm2/mg

Vulnerability saturates before the GCR flux “iron knee”

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
Normalized Onset Voltage for Immediate SEB: Comparison of Device Types

Onset for SEB similar across device types: ~40% to 50% of rated V; Use of real breakdown voltage would strengthen similarity across devices of different ratings
Summary of Design Insights

• SEB susceptibility similar across all device types suggesting common mechanism
 – E-field dependent
 – Saturated onset at ~40% – 50% of rated voltage
• **Schottky contact increases susceptibility of I_R degradation but not SEB**
• I_R and I_{DS} degradation in diodes & MOSFETs may be most linked to material properties
 – Minimal E-field dependence
 – Susceptibility saturates at low LETs (< 10 MeV-cm²/mg)
• **JFET I_{DG} degradation, however, shows field dependence**
 – No difference between normally-on and normally-off designs
• **MOSFET I_{DG} degradation is design-dependent – expected to be easiest effect to eliminate**
 – Does not occur at low LETs / lighter ions
• **MOSFET latent gate damage susceptibility occurs in all designs at very low V_{DS}**
 – Onset by ~100 V_{DS}
 – Does not occur at low LETs / lighter ions
 – Expected to be the most difficult heavy-ion effect to eliminate
PART 2: TESTING
Test Challenge: Identification of SEB SOA

Degradation is non-Poisson process: Prior damage can impact effect of next ions. Threshold for SEB can be affected, preventing accurate identification of “SEB-safe” region of operation.

Saturation: Heat? or Degraded E-field?
Rate of leakage current degradation in 1200-V power MOSFET increases with increasing temperature. Because SiC dopants may not be fully ionized at room temperature, important to test at application temperature!
Testing: Angle Effects

- **Diode & MOSFET (in $\Delta I_D >> \Delta I_G$ regime):**
 - Strong angle effect
 - At given V_R / V_{DS}, no degradation at 45°
 - Matching vertical component of E-field has no impact: Cosine law not followed

- **MOSFET (in $\Delta I_D = \Delta I_G$ regime):**
 - Follows cosine law
 - Path length through gate likely dominates angle effect
 (Vertical field reduced with angle)

To be published in the conference proceedings of the 2018 MRQW Microelectronics Reliability and Qualification Working Meeting, posted on a public website www.aerospace.org
Summary of Testing Insights

• We may not be able to reliably define the SEB safe-operating area
 – Appropriate test fluence may not be achievable before damage influences SEB susceptibility
 – No longer a true “single-event effect” due to effect of prior ion strikes
• Temperature influences rate of current degradation
 – Application temperature testing may be required
• Strong angle responses will help reduce on-orbit susceptibility
 – May also make rate calculations difficult
• Lighter ions/lower LETs will reveal nuances between designs
 – Responses saturate quickly
PART 3: OVERCOMING RADIATION THREATS
Radiation Hardness by Design: 1200 V MOSFET

- Reduced SEB susceptibility
 - Thicker epilayer
- Degradation of I_{DG} eliminated
 - Drain neck width reduction
- Minimal change in onset of other degradation effects:
 - $\Delta I_D >> \Delta I_G$
 - latent gate damage

Continued research and development efforts are necessary to understand residual degradation mechanisms!
Summary & RHA Conclusions

• SEB safe operating area is difficult to reliably define
 – Susceptibility quickly saturates before the high-flux iron knee of the GCR spectrum
 • Mission orbit will have less influence on risk

• Application-specific temperature testing may be necessary
 – Dopants not fully ionized at room temperature
 – Effects of temperature on SEB susceptibility must be established

• Some degradation mechanisms may persist despite RHBD efforts
 – Impact on device long-term reliability must be established

• Radiation hardening comes with a cost
 – As with Si power MOSFETs, electrical performance will suffer from hardening techniques

• Lighter ion/lower LET tests will reveal nuances between designs and aid on-orbit degradation predictions
 – Responses are saturated at LETs dictated by typical mission destructive-SEE radiation requirements
 – LET should be specified in terms of LET(Si) but penetration range must be for SiC

• Characterization data should include identification of voltage conditions at which different effects occur
 – Richer dataset will include how susceptibility to these effects changes with ion species/LET