TFAWS Passive Thermal Paper Session

Thermal Analysis of Propulsion Components for the Europa Clipper Mission
Heather Bradshaw, NASA GSFC

Presented By
Heather Bradshaw

Thermal & Fluids Analysis Workshop
TFAWS 2018
August 20-24, 2018
NASA Johnson Space Flight Center
Houston, TX
Europa Clipper (EC)

Science objectives:
- Perform flyby’s to explore this icy moon of Jupiter; 9 instruments
- Determine ice thickness, search for subsurface lakes/oceans, determine the depth and salinity of these bodies of water
- Assess whether Jupiter’s icy moon, Europa, may have conditions suitable for life

Propulsion Module, APL

Avionics Module, JPL

Solar Array Wing (x2), APL

LV Separation System & Adapter, JPL

Propulsion Subsystem, Goddard

[details of images have been redacted]
Propulsion Subsystem Overview (How it Works)

- **Liquid propellants:**
  - Fuel = MMH = Monomethylhydrazine
  - Oxidizer (Ox) = MON-3 (Mixed Oxides of Nitrogen)
- Avoid combusting too soon (before it reaches the engine) = separate the paths of Oxidizer (Ox) & Fuel
- Fuel + Ox = Combustion (Thrust)

- Ensure outlet of liquid propellant remains “wetted” (avoid “slosh”) = backfill the tank using a **gas pressurant** = Helium (He) in this case
- Components mounted to plates: valves, filters, etc., (somewhat analogous to a SCUBA regulator system)
  - Adjust **gas pressurant** (He) flow = **PCA plate** = Pressurant Control Assembly
  - Adjust **liquid propellant** (fuel and oxidizer) flow = **PIA plate** = Propellant Isolation Assembly

- [Details of images have been redacted]

- Liquid propellants:
  - Fuel = MMH = Monomethylhydrazine
  - Oxidizer (Ox) = MON-3 (Mixed Oxides of Nitrogen)

- Avoid combusting too soon (before it reaches the engine) = separate the paths of Oxidizer (Ox) & Fuel

- Fuel + Ox = Combustion (Thrust)

- Ensure outlet of liquid propellant remains “wetted” (avoid “slosh”) = backfill the tank using a gas pressurant = Helium (He) in this case

- Components mounted to plates: valves, filters, etc., (somewhat analogous to a SCUBA regulator system)
  - Adjust gas pressurant (He) flow = PCA plate = Pressurant Control Assembly
  - Adjust liquid propellant (fuel and oxidizer) flow = PIA plate = Propellant Isolation Assembly

- [CAD Images, Credit: Kurt Wolko]

- Thruster Photo Credit: MOOG.
## Propulsion Subsystem: Thermal Overview

<table>
<thead>
<tr>
<th></th>
<th>Typical</th>
<th>Europa Clipper (Not Typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Approach:</strong></td>
<td>• <strong>Isolate components</strong> from structure, and <strong>use heater power</strong> to maintain their temperature.</td>
<td>• Jupiter is far from sun, minimal solar power available, <strong>minimize heater power</strong> needed, <strong>thermally couple components</strong> to structure.</td>
</tr>
<tr>
<td><strong>Thermal Control:</strong></td>
<td>• <strong>Heaters</strong>, controlled by thermostats or flight software (FSW), located on: prop lines (to prevent liquid from freezing), engine valves, other components as needed.</td>
<td>• <strong>Pumped fluid loop (HRS)</strong> draws heat from the warm “Vault” of electronics, and transports it to prop module structure, PCA/PIA plates, and engine REM brackets. Goal is to avoid using heaters on prop lines or components.</td>
</tr>
<tr>
<td><strong>Prop Lines:</strong></td>
<td>• Install <strong>thermostats</strong>, <strong>heaters</strong>, <strong>aluminum over-tape</strong>, <strong>sensors</strong>, and <strong>MLI</strong>.</td>
<td>• <strong>Bare Ti prop lines</strong> and components, radiating to structure.</td>
</tr>
<tr>
<td><strong>Engine Valves:</strong></td>
<td>• <strong>Isolate</strong> from structure. <strong>Install heater</strong>, <strong>sensor</strong> and/or <strong>thermostat</strong>. <strong>No blanket, and no over-tape</strong> (need high-e to radiate during soak-back).</td>
<td>• <strong>Heat-sink</strong> to structure. <strong>No heater</strong>. Rely on heat sink to HRS to cool valve during soak-back, and to heat valve during cold cruise. <strong>Bare</strong> (no blanket or tape).</td>
</tr>
</tbody>
</table>

**Heat Redistribution System (HRS):**
HRS delivers heat to propulsion module, keeping structure warm.
<table>
<thead>
<tr>
<th></th>
<th>Typical</th>
<th>Europa Clipper (Not Typical)</th>
</tr>
</thead>
</table>
| **Propellant Tanks (liquid):** | • **Heaters**, **thermostats**, **sensors**, **aluminum tape**, **blanket** or **Heaters on structure** that surrounds/holds tanks, **high-e surfaces inside “toasty cavity”**, radiative coupling. **Note:** Prop system is internal to spacecraft, **access is blocked** at later stages, so it is one of the few subsystems that is critical to define Tvac Thermocouple locations and install them EARLY during fabrication (not during testing phase). | **Bare Ti tanks, no heaters.**  
**Radiate to warm cylinder (prop module cylinder is irridite aluminum, heated by HRS).** |
| Pressurant Tanks (gas):     | • **Bare**. No heaters, no blankets. Tank located internal to spacecraft. | **Heaters**, **thermostats**, **sensors**, and **blanket**.  
**Need to maintain tank above cold limits and to pre-heat tanks before long burn.** |
| Engine Injector:            | • **Heater**.                                                           | **No heater**.  
Rely on conduction through valve to HRS to maintain above cold limit. |
| Engine Nozzle:              | • **High-emissivity outer coating**, to radiate heat away when firing, to prevent engine from overheating | Same. |
| High-Temperature blankets:  | • **High-temperature blankets** near thrusters                          | Same. |
| Contamination Bake-out:     | • **Goal is to bake off volatiles**, and avoid having them condense on optics or sensitive hardware; meet the outgassing criteria. | • **Planetary Protection** bake-out: much **hotter temperatures, and longer durations**. Affects material selections. |
Prop Subsystem: Component Thermal Considerations

- **Goal:**
  - Maintain components within temperature limits.

- **Pressurant Tanks (gas):**
  - Most burns are short, a few minutes long, small delta-P, negligible temperature change
  - Jupiter Orbit Insertion (JOI) burn:
    - lasts for several hours
    - large pressure drop
    - large temperature drop in pressurant gas
  - Use heater, to pre-heat gas before long burn
  - Analyze components: can they withstand cold transient profile?
  - Ideal gas law

\[ P \times V = n \times R \times T \]

- **High P&T**
- **Low P&T**

- **Component 1:** O-rings inside: if cold, brittle, seal leaks pressurant to space
- **Component 2:** Electronics inside: if too cold or hot, may not perform

Data Credit: MSFC, Kim Holt

TFAWS 2018 – August 20-24, 2018
Considerations for Component #2

Component #2: Design Iterations

- Clamps bolted to plate, but **spot-welded** to housing (**not well coupled**).
- Cold case:
  - 0W dissipation
  - -38C cold gas
  - Heat from 0C plate, unable to reach boards, *electronics became cold*
- Hot case:
  - 0.7W dissipation
  - No gas flowing
  - Unable to dissipate enough heat to 35C plate, *electronics became hot*

• Added a clamp in middle, with excellent thermal contact to housing
• Removed spot-welded clamps entirely
• Increased contact area of the high thermally coupling clamp
Europa Clipper (EC) Engines (Thrusters)

- **Thermal Analyses**
  - Valve & Injector: Cold cruise
  - Valve & Nozzle: Hot fire
  - Valve: Soak-back
- **Minimize Heaters**
  - HRS (pumped fluid) system maintains temperature
  - Avoid heaters (weak sun at Jupiter, less energy from solar panels, little power available)
- **Hardware Considerations**
  - High Temperature Blankets, near engines
  - Planetary protection (PP) bake-out, (hotter than typical bake-out)

### Incandescence

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Description</th>
<th>Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 (M55J bonded Ti)</td>
<td>Instrument bake-out</td>
<td>LEO</td>
</tr>
<tr>
<td>120 to 150</td>
<td>PP bake-out (depending on component)</td>
<td>Interplanetary</td>
</tr>
<tr>
<td>1,306</td>
<td>Nozzle temperature (need high-temp blankets)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

**Typical Engine Design**
- Valve loses heat to nozzle
- Replenished by **Heater**
- Isolators minimize heat pulled from SC

**EC Engine Design**
- Valve loses heat to nozzle
- Replenished by **HRS**

**Temp [°C]**
- 550
- 630
- 680
- 740
- 770
- 800
- 850
- 900
- 950
- 1000
- 1100
- 1200
- 1300

Sample photos for context. Photo Credits: MOOG & Rich Driscoll.

Cold:
- Liquid propellants, would freeze at:
  - Ox, MON3: -10°C to -14°C
  - Fuel, MMH: -52°C
- Result: Valves, injector, and propellant lines stay above this
  - (Some missions need heaters on valves and/or injector)

Hot:
- Valve hot limit: 101°C
- Nozzle hot limit: 1371°C
- Result: Valves and nozzles stay within this
Conceptual Sketch of Heat Flows

Before Firing:
- Nozzle radiates to cold space
- Valve warmed by HRS

During SS Firing:
- Nozzle heated by combustion gases
- Valve cooled by flowing propellant

Soak-back (Transient, right after firing):
- Just after firing:
  - Propellant stops flowing
  - Nozzle has not fully cooled off yet
  - large dT between nozzle and valve
  - Q transferred to valve = “soak-back heat”
Other conclusions we can draw (specific to EC):

- **Firing & Soak-back Temperatures**
  - **Non-Firing Valve at Steady State** is warmer than Firing valve’s transient soak-back spike.
  - The Firing nozzle is warmest item (as expected).

![Graph showing temperature comparisons between firing and non-firing valves.](image)

- **If performing a short burn**, then the firing valve soak-back is hotter than non-firing valve.

![Graph showing SS Firing Temperature Map.](image)
Firing Engine:

Valve warms up (soak-back), then cools

Nozzle cools

Non-Firing Engine (Nearby):

Valve cools (no soak-back, nozzle not hot enough)

Non-Firing Nozzle cools

TFAWS 2018 – August 20-24, 2018
High Temperature Blankets

<table>
<thead>
<tr>
<th>Material</th>
<th>Melt (°C)</th>
<th>Service (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mylar</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>Dacron</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Stamet</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Kapton</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel Foil</td>
<td>&gt;1000</td>
<td></td>
</tr>
<tr>
<td>(e_IR = 0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Temp Fabric*</td>
<td>&gt;1000</td>
<td></td>
</tr>
</tbody>
</table>

*High temperature fabric can be Astroquartz, E-glass, Nextel, etc.

- **High temperature blankets require different materials** than normal blankets, to avoid melting during thruster burn maneuvers.
- For context:
  - EC predicted nozzle temperature = 1,306 °C
  - EC predicted temperature of outermost (hottest) blanket layer = 447 °C
  - Kapton’s maximum service temperature = 400 °C
- Examples of materials and their melting and/or service temperature range are provided here for reference.

Credit: High temperature blanket analysis and recommendation performed by Dan Powers.

TFAWS 2018 – August 20-24, 2018
Engine Model Development (cont’d)

Key equations used in engine model, and work that went into determining $G$, $m$, $e$, $k$, & $h$:

<table>
<thead>
<tr>
<th>Nozzle:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{\text{radiation}} = e \cdot A \cdot \sigma \cdot VF \cdot (T^4 - T_{\text{space}}^4)$</td>
</tr>
<tr>
<td>$Q_{\text{convection}} = h \cdot A \cdot dT$</td>
</tr>
</tbody>
</table>

**Measured Nozzle Emissivity ($e$) Values in $T_{\text{vac}}$:**
- Coated emissivity = 0.72
- Bare emissivity = 0.08

**Valve:**
- $Q_{\text{transient}} = m \cdot c_p \cdot dT$
- $Q_{\text{conduction}} = G \cdot dT = k \cdot A / L$

**Used MOOG Valve Model:**
- Thermal model from MOOG, for **geometry**, and **conductance values** ($G$, $m$)

**Correlated Nozzle Convection Coefficients ($h$) to Combustion Gas Boundaries**
- Used previous **Hot Fire Test Data**

**Converted Format:**
- From sinda-based text logic, to GUI-based TD control and manipulation of firing, as well as nodes and conductors.

[Diagram showing IR Emissivity and Nozzle sections, convect to hot combustion gases (not shown)]
**Tvac Tests: Nozzle Emissivity Measurements (Not Firing)**

**Test Design & Approach:**

- Varied Q heater for multiple thermal balance points.
- Performed test for bare nozzle, and coated nozzle.
  - Correlated model, derived emissivity.

\[
Q_{\text{heaters}} = A \cdot e_{\text{noz}} \cdot \sigma (T_{\text{noz}}^4 - T_{\text{shroud}}^4)
\]

- Qin = Qout

- Q in = heaters applied to nozzle interior
- Q out = nozzle radiates to shroud

Coated Nozzle: 7W, Thermal balance case prediction (sample)

Test Design & Approach:

- Varied Q heater for multiple thermal balance points.
- Performed test for bare nozzle, and coated nozzle.
  - Correlated model, derived emissivity.
**Results: Coated Nozzle**

### Correlation Data:

<table>
<thead>
<tr>
<th></th>
<th>1 W</th>
<th>2 W</th>
<th>3 W</th>
<th>4 W</th>
<th>7 W</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tvac</strong></td>
<td><strong>Model</strong></td>
<td><strong>Diff. (M-T)</strong></td>
<td><strong>Tvac</strong></td>
<td><strong>Model</strong></td>
<td><strong>Diff. (M-T)</strong></td>
</tr>
<tr>
<td>TC.1</td>
<td>-72.0</td>
<td>-74.0</td>
<td>2.0</td>
<td>-37.8</td>
<td>-39.4</td>
</tr>
<tr>
<td>TC.2</td>
<td>-72.5</td>
<td>-74.2</td>
<td>-1.7</td>
<td>-38.7</td>
<td>-39.7</td>
</tr>
<tr>
<td>TC.3</td>
<td>-74.5</td>
<td>-74.8</td>
<td>-0.3</td>
<td>-41.7</td>
<td>-40.9</td>
</tr>
<tr>
<td>TC.4</td>
<td>-69.7</td>
<td>-72.2</td>
<td>2.5</td>
<td>-33.9</td>
<td>-35.8</td>
</tr>
<tr>
<td>TC.5</td>
<td>-72.6</td>
<td>-74.5</td>
<td>-1.9</td>
<td>-38.7</td>
<td>-40.3</td>
</tr>
<tr>
<td>TC.6</td>
<td>-71.6</td>
<td>-73.7</td>
<td>2.1</td>
<td>-36.7</td>
<td>-38.7</td>
</tr>
<tr>
<td>TC.7</td>
<td>-75.0</td>
<td>-75.0</td>
<td>0.0</td>
<td>-42.1</td>
<td>-41.3</td>
</tr>
<tr>
<td>TC.8</td>
<td>-75.0</td>
<td>-75.0</td>
<td>0.0</td>
<td>-41.0</td>
<td>-41.3</td>
</tr>
<tr>
<td>Average</td>
<td>-72.9</td>
<td>-74.2</td>
<td>1.3</td>
<td>-38.8</td>
<td>-39.7</td>
</tr>
<tr>
<td><strong>RMS of TC 1-8 errors, per case:</strong></td>
<td>1.6</td>
<td>1.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Overall RMS (across all cases):</strong></td>
<td><strong>2.9</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**RMS of TC 1-8 errors, per case: 2.2 2.0 2.0 3.5 4.0**

**Overall RMS (across all cases): 2.9**

**Correlated Model, e = 0.72**, RMS error 2.9°C

### Balance Points Measured:

<table>
<thead>
<tr>
<th></th>
<th>1 W</th>
<th>2 W</th>
<th>3 W</th>
<th>4 W</th>
<th>7 W</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tvac</strong></td>
<td><strong>Model</strong></td>
<td><strong>Diff. (M-T)</strong></td>
<td><strong>Tvac</strong></td>
<td><strong>Model</strong></td>
<td><strong>Diff. (M-T)</strong></td>
</tr>
<tr>
<td>TC.1</td>
<td>-72.0</td>
<td>-74.7</td>
<td>-2.7</td>
<td>-37.8</td>
<td>-40.2</td>
</tr>
<tr>
<td>TC.2</td>
<td>-72.5</td>
<td>-74.9</td>
<td>-2.4</td>
<td>-38.7</td>
<td>-40.6</td>
</tr>
<tr>
<td>TC.3</td>
<td>-74.5</td>
<td>-76.5</td>
<td>-2.0</td>
<td>-41.7</td>
<td>-43.7</td>
</tr>
<tr>
<td>TC.4</td>
<td>-69.7</td>
<td>-72.9</td>
<td>-3.2</td>
<td>-33.9</td>
<td>-36.6</td>
</tr>
<tr>
<td>TC.5</td>
<td>-72.6</td>
<td>-75.2</td>
<td>-2.6</td>
<td>-38.7</td>
<td>-41.1</td>
</tr>
<tr>
<td>TC.6</td>
<td>-71.6</td>
<td>-74.4</td>
<td>-2.7</td>
<td>-36.7</td>
<td>-39.5</td>
</tr>
<tr>
<td>TC.7</td>
<td>-75.0</td>
<td>-75.7</td>
<td>-0.7</td>
<td>-42.1</td>
<td>-42.2</td>
</tr>
<tr>
<td>TC.8</td>
<td>-75.0</td>
<td>-75.7</td>
<td>-0.7</td>
<td>-41.0</td>
<td>-42.2</td>
</tr>
<tr>
<td><strong>Average</strong></td>
<td>-72.9</td>
<td>-74.9</td>
<td>-2.0</td>
<td>-38.8</td>
<td>-40.5</td>
</tr>
<tr>
<td><strong>RMS of TC 1-8 errors, per case:</strong></td>
<td>2.2</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Overall RMS (across all cases):</strong></td>
<td><strong>2.7</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Correlation Data:**

<table>
<thead>
<tr>
<th></th>
<th>1 W</th>
<th>2 W</th>
<th>3 W</th>
<th>4 W</th>
<th>7 W</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Tvac</strong></td>
<td><strong>Model</strong></td>
<td><strong>Diff. (M-T)</strong></td>
<td><strong>Tvac</strong></td>
<td><strong>Model</strong></td>
<td><strong>Diff. (M-T)</strong></td>
</tr>
<tr>
<td>TC.1</td>
<td>-72.0</td>
<td>-75.3</td>
<td>-3.3</td>
<td>-37.8</td>
<td>-41.0</td>
</tr>
<tr>
<td>TC.2</td>
<td>-72.5</td>
<td>-75.5</td>
<td>-3.0</td>
<td>-38.7</td>
<td>-41.3</td>
</tr>
<tr>
<td>TC.3</td>
<td>-74.5</td>
<td>-76.1</td>
<td>-1.6</td>
<td>-41.7</td>
<td>-42.4</td>
</tr>
<tr>
<td>TC.4</td>
<td>-69.7</td>
<td>-73.5</td>
<td>-3.8</td>
<td>-33.9</td>
<td>-37.4</td>
</tr>
<tr>
<td>TC.5</td>
<td>-72.6</td>
<td>-75.8</td>
<td>-3.2</td>
<td>-38.7</td>
<td>-41.3</td>
</tr>
<tr>
<td>TC.6</td>
<td>-71.6</td>
<td>-75.0</td>
<td>-3.4</td>
<td>-36.7</td>
<td>-40.3</td>
</tr>
<tr>
<td>TC.7</td>
<td>-75.0</td>
<td>-76.3</td>
<td>-1.3</td>
<td>-42.1</td>
<td>-42.9</td>
</tr>
<tr>
<td>TC.8</td>
<td>-75.0</td>
<td>-76.3</td>
<td>-1.3</td>
<td>-41.0</td>
<td>-42.9</td>
</tr>
<tr>
<td><strong>Average</strong></td>
<td>-72.9</td>
<td>-75.5</td>
<td>-2.6</td>
<td>-38.8</td>
<td>-41.3</td>
</tr>
<tr>
<td><strong>RMS of TC 1-8 errors, per case:</strong></td>
<td>2.8</td>
<td>2.7</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Overall RMS (across all cases):</strong></td>
<td><strong>2.9</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Correlated Model, e = 0.72**, RMS error 2.9°C

**Sensitivity Study, e + 0.01 = 0.73**

**Sensitivity Study, e - 0.01 = 0.71**

**e = 0.72, RMS error 2.7°C = lowest error = sweet spot**

---

**Correlated Model, e = 0.72**, RMS error 2.9°C

---

**e = 0.73, RMS error 2.9°C**

---

**TFAWS 2018 – August 20-24, 2018**
Results: Bare/Uncoated Nozzle

### Table: TC Temperatures

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-48.0</td>
<td>-9.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-9.0</td>
<td>-12.0</td>
</tr>
<tr>
<td>-47.8</td>
<td>-8.8</td>
<td>-1.9</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-9.0</td>
<td>-12.0</td>
</tr>
<tr>
<td>-47.5</td>
<td>-8.5</td>
<td>-1.8</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-9.0</td>
<td>-12.0</td>
</tr>
<tr>
<td>-47.0</td>
<td>-8.2</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-9.0</td>
<td>-12.0</td>
</tr>
<tr>
<td>-46.0</td>
<td>-7.2</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-9.0</td>
<td>-12.0</td>
</tr>
<tr>
<td>-45.0</td>
<td>-6.2</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-9.0</td>
<td>-12.0</td>
</tr>
</tbody>
</table>

**RMS of TC 1-8 errors, per case:**

<table>
<thead>
<tr>
<th>TC.1</th>
<th>TC.2</th>
<th>TC.3</th>
<th>TC.4</th>
<th>TC.5</th>
<th>TC.6</th>
<th>TC.7</th>
<th>TC.8</th>
<th>TC.12</th>
<th>TC.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1.0</td>
<td>2.2</td>
<td>2.2</td>
<td>1.7</td>
<td>2.2</td>
<td>1.5</td>
<td>2.2</td>
<td>1.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

**Overall RMS (across all cases):** 2.4

---

**e = 0.075, RMS error 2.5C**

**e = 0.080, RMS error 5.4C**

---

**Balance Points Measured:**

**e = 0.08**
Nozzle Model: Correlation to Hot Fire Test Data

- Hot firing test data consisted of:
  - Discretized gas temperatures
  - Corresponding convection coefficients along the length of the nozzle.
  - Nozzle temperatures along the length
  - Nozzle dimensions and thicknesses

- Created detailed and reduced thermal models from this data, and modified convection coefficients ($h_g$) to match nozzle temperature data, especially the peak temperature

- Correlations matched well, within 17°C (out of thousands of degrees C)
Conclusions

Lessons Learned & Thermal Considerations for Propulsion Systems

• Propellants
  – Will the liquid propellants freeze in the prop lines, or anywhere else along the system?

• Components
  – Will the components used to regulate flow, whether on the pressurant gas or liquid propellant side, stay within their hot and cold limits, in all cases?

• Engines (thrusters), 3 cases:
  – Will valves or injector freeze during cold case?
  – Will valves overheat during SS firing, and/or transient soak-back?
  – Will nozzle overheat when firing?

• Environmental Hot/Cold cases:
  – Hot case: close to sun (Venus flyby)
  – Cold case: deep space, near Jupiter (weak sun), and/or eclipse (no sun)

• Evaluate the coldest gas case:
  – What is the longest burn during the mission?
  – How cold will the pressurant gas become?
  – Will exposure to this cold gas cause components, or the pressurant tank, or gas lines, to exceed limits? (if so, may need to add heaters)

• Caveat:
  – This is not a complete list of propulsion thermal considerations.
  – It contains highlights related to EC and what I’ve learned so far.
Acknowledgements

- Dan Powers
- Bruce Williams (APL)
- Kim Holt (MSFC)
- Kurt Wolko
- Steve McKim
- Dan Ramspacher
- Rich Driscoll
- MOOG, Inc.
- Mario Martins
- Brian Rice
- Cindy Beer (C&R)

- Caitlin Bacha
- David Steinfeld
- Carlton Peters
- Veronica Otero
- Daniel Nguyen
- Carl Engelbrecht (APL)
- Stuart Hill (APL)
- Brenna Freeman

TFAWS 2018 – August 20-24, 2018
• Bracket is held at constant boundary temperature (HRS).
• MLI inner layer sees a slight spike due to valve soak-back as well.
Abstract

This presentation describes the thermal analysis and model development that occurred for selected components on the propulsion module subsystem of the Europa Clipper mission, which will fly to Jupiter’s icy moon Europa and collect science data from orbit. An overview of a bipropellant system is given, as well as a description of a typical thermal propulsion design. A comparison is also provided, describing the unique Europa Clipper thermal design, which is atypical in many respects. The engine thermal model development is also discussed, including hot-firing tests with nozzle convection correlation, as well as thermal vacuum tests to measure and correlate the emissivity of critical nozzle surfaces. A description of engine firing, as well as valve soak-back, is also provided, including temperature maps and results of engine cases. A summary is also provided, of lessons learned regarding thermal propulsion considerations.