Training for Mars

Dr. Immanuel Barshi, NASA/Ames Research Center
Dr. Donna Dempsey, NASA/Johnson Space Center
Introduction

NASA has been studying the long term retention and transfer of trained skills using two tasks:

- A memory task
- A data entry task

While this research is on going, we report here one completed study using undergraduate university students as subjects. This study was conducted in collaboration with Alice Healy, Vivian Schneider and Carolyn Buck-Gengler at the University of Colorado, Boulder and with James Kole at the University of Northern Colorado.
Spaceflight training for Apollo era and Space Shuttle missions was designed to train crew on specific tasks for their short duration missions. The training mottos included “practice, practice, practice” and “hammering it in.”

However, training for longer duration ISS missions has been more challenging. There is clear documentation that tasks and skills trained pre-flight are not all retained throughout the mission, and this lack of training retention is augmented with real-time ground support.

NASA does not currently have a training design that supports semi-autonomous to autonomous mission operations.
The current design of a manned Mars mission calls for a 32-month long mission and asynchronous communication involving long delays.

Reference: Human Exploration of Mars Design Reference Architecture 5.0, Drake ed.
Training for Mars

The long duration of the mission and the inability to maintain real-time communication with Earth for mission support require skill-based training that ensures long-term retention and the ability to transfer the acquired skills to tasks and situations that were not previously trained.
Training Retention and Transfer Research Study

To design such training, we have been studying the long term retention and transfer of trained skills using two tasks:

- A memory task
- A data entry task
Memory Task

In a continuous memory-updating paradigm, subjects studied name-location associations and were tested later for the location most recently associated with a given name.
Subjects study the **name-location association** and mark the corresponding location on the map.

The **black font** indicates that a **default response** will be required later when recalling the location of Alpha:

For the **default response**, subjects mark the same location, on the right side of the map.
Subjects study the **name-location association** and mark the corresponding location on the map.

The **black font** indicates that a **default response** will be required later when recalling the location of Alpha:

For the **default response**, subjects mark the same location, on the right side of the map.
Subjects study the name-location association and mark the corresponding location on the map.

The black font indicates that a default response will be required later when recalling the location of Alpha:

The default response for Alpha is marked in the same location, on the right side of the map:

For the default response, subjects mark the same location, on the right side of the map.
Subjects study the *name-location association* and mark the corresponding location on the map.

The *green font* indicates that a *distinctive response* will be required later when recalling the location of Charlie:

For the *distinctive response*, subjects mark the location on the map on the other side of the display.
Subjects study the name-location association and mark the corresponding location on the map.

The green font indicates that a distinctive response will be required later when recalling the location of Charlie:

The distinctive response for Charlie is marked on the map on the other side of the display:

For the distinctive response, subjects mark the location on the map on the other side of the display.
Subjects study the name-location association and mark the corresponding location on the map.

The green font indicates that a distinctive response will be required later when recalling the location of Charlie:

The distinctive response for Charlie is marked on the map on the other side of the display:

For the distinctive response, subjects mark the location on the map on the other side of the display.
Participants completed the task at test 6 or 8 months after training under conditions where working memory was or was not occupied with a secondary counting backwards task.

Memory for the location associated with a given name was better overall with short than with long retention intervals and was better when distinctive (rather than default) responses were to be made, especially at the long retention interval, even when counting backwards was required.
Results: Training

- Proportion correct location as a function of trial type and retention interval during training.
Results: Training

- Proportion correct side as a function of trial type and retention interval during training.
Results: Training

- Proportion correct location given correct side as a function of trial type and retention interval during training.
Results: Test

- Proportion correct location as a function of test session, trial type, and retention interval at test.
This research replicated the finding that distinctive responding protects against forgetting associations.

However, researchers found no evidence that the protective function is due to holding the associations from the distinctive trials in working memory.

Understanding the cause of the protective function for distinctive responding is, thus, a challenge for future theorizing and research.
Data Entry Task

In a data entry task, subjects trained in a standard data entry task and were tested later on the standard test followed by variants of the standard task.
Standard Task
- Involved subjects typing numbers using their right (or dominant) hand.

Left-Hand Task (Motoric Change)
- At an initial test (6 months after training), subjects completed the standard task, followed by a left-hand variant (typing with their left hands) that involved the same perceptual, but different motoric, processes as the standard task.

Code Task (Perceptual Change)
- At a second test (8 months after training), subjects completed the standard task, followed by a code variant (translating letters into digits, then typing the digits with their right hands) that involved different perceptual, but the same motoric, processes as the standard task.
At test, for each of the three tasks, half the trials were trained numbers (old) and half were new. Repetition priming (faster response times to old than new numbers) was found for each task. Repetition priming for the standard task reflects retention of trained numbers; for the left-hand variant reflects transfer of perceptual processes; and for the code variant reflects transfer of motoric processes. There was thus evidence for both specificity and generalizability of training data entry perceptual and motoric processes over very long retention intervals.
Results: Training

- There were significant main effects of both session and block of training.
There were significant main effects of task and trial type and a significant interaction between task and trial type. In separate analyses of each task, there was significant repetition priming (old faster than new) for the left-hand task but not for the standard task.
There were significant main effects of task and trial type and a significant interaction between task and trial type. In separate analyses of each task, there was significant repetition priming for both tasks, but repetition priming was larger for the code than for the standard task.
The observed repetition priming in the standard task at Test 2 (advantage for old relative to new stimuli) provides evidence both for specificity of training and for retention of the trained stimuli over the very long retention interval of 8 months.

The observed repetition priming on the left-hand and code tasks at Tests 1 and 2 (which was significantly larger than that for the standard task) provides evidence for generalizability of training from the standard task to other conditions. For the left-hand task there was transfer of perceptual processes despite changes in motoric processes, and for the code task there was transfer of motoric processes despite changes in perceptual processes.
Data Entry Task
Conclusions

In previous work with other tasks and measures (Healy, Schneider, & Barshi, 2015), either specificity or generalizability was found, but not both. Nevertheless, there was evidence here for both specificity and generalizability of training for both perceptual and motoric processes of data entry even over very long delays.
Implications for Training for Mars

We are currently running two additional subject groups through these two tasks, the 2017 astronaut candidate class and a group of “crew-like” subjects.

The results of our research will inform the design of training for a future manned mission to Mars, including the need for and possible scheduling of onboard refresher and JIT training.