Continuous sub-Kelvin cooling from an adiabatic demagnetization refrigerator

Mark O. Kimball1, Peter. J. Shirron1, Edgar R. Canavan1, Bryan L. James1, Michael A. Sampson1, and Richard V. Letmate2

1 NASA / Goddard Space Flight Center
2 ATA Aerospace
Why the need for sub-Kelvin cooling in space flight?

- Astro-H / XRISM uses an array of 36 bolometers with absorbers tuned to soft-Xray energies. They require 50 mK to reach stated sensitivity less than 7 eV.

- PIPER uses two Backshort-Under-Grid (BUG) superconducting transition-edge sensors (TES) detectors developed at NASA/GSFC measure signal (> 5000 pixels). TES tuned to ~ 100 mK temperature range.

- PIXIE (proposed) will use an array of infrared-sensitive bolometers to measure the polarization of the cosmic microwave background (CMB). Temperature requirement.

- Origins Space Telescope (proposed) contains three instruments that require sub-Kelvin cooling. All three use TES detectors operating at 50 mK. At this temperature, the sensitivity will be limited by the sky background.
Adiabatic Demagnetization Refrigeration

1. **Slowly demagnetize**
 - $T = T_{\text{low}}$
 - Absorb heat from detectors

2. **Rapidly magnetize**
 - $T \rightarrow T_{\text{sink}}$
 - Heat switch closed
 - Magnetize to B_{max}
 - $T > T_{\text{sink}}$
 - Dump heat to sink

3. **Rapidly demagnetize**
 - $T \rightarrow T_{\text{low}}$
 - Detector

4. **Heat Sink**

5. **Salt Pill**

Diagram shows a cycle of processes involving magnetic state transitions and heat exchange between a magnet, salt pill, and a heat sink.
Continuous ADR

Detector

T₁ = T_{Detector}

Salt Pill 1

Magnet

Decreasing Field

Salt Pill 2

Magnet

Increasing Field

T₂ > T₃

Salt Pill 3

Magnet

Decreasing Field

Heat Sink

Detector

T₁ = T_{Detector}

Salt Pill 1

Magnet

Increasing Field

Salt Pill 2

Magnet

T₂ < T₁

Decreasing Field

T₃ > T₄

Salt Pill 3

Magnet

Increasing Field

Heat Sink
CADR built for External Mission

4 Stages

① 45 g CPA [0.100 K]
② 100 g CPA [0.375 -> 0.09 K]
③ 100 g CPA [1.4 -> 0.275 K]
④ 82 g GGG [4.2 -> 1.2 K]

Heat Switches

① Superconducting Switch (1 -> 2)
② Passive Gas-Gap (2 -> 3)
③ Passive Gas-Gap (3 -> 4)
④ Internal Passive Gas-Gap (4 -> H.S.)
4 Stages

① 45 g CPA [0.100 K]
② 100 g CPA [0.375 -> 0.09 K]
③ 100 g CPA [1.4 -> 0.275 K]
④ 82 g GGG [3 -> 1.2 K]

Heat Switches

① Superconducting Switch (1 -> 2)
② Passive Gas-Gap (2 -> 3)
③ Passive Gas-Gap (3 -> 4)
④ Internal Passive Gas-Gap (4 -> H.S.)
Same CADR; Different Configurations

4 Stages

① 45 g CPA [0.100 K]
② 100 g CPA [0.375 -> 0.09 K]
③ 100 g CPA [1.4 -> 0.275 K]
④ 82 g GGG [3 -> 1.2 K]

Heat Switches

① Superconducting Switch (1 -> 2)
② Passive Gas-Gap (2 -> 3)
③ Passive Gas-Gap (3 -> 4)
④ Internal Passive Gas-Gap (4 -> H.S.)
Passive Gas-Gap Heat Switches

- Passively closes when temperature of associated stage warms above some value
 - More thermodynamically efficient since no additional heat added to system to activate
- Thin (0.127 mm) titanium outer shell
- Gold-plated copper innards consist of interleaved fins with a 0.36 mm gap between when assembled
- Getter typically sintered stainless pucks or the copper fins themselves
Stage 4 Passive GGHS Internal to Stage

- One set of “fins” is the salt pill
- Other set the magnet itself
 - ~ 0.4 mm gap between adjacent pair of fins
- Sintered 300 CRES getters epoxied onto the pill provide attractive surface for He-3
 - If 3He between sets of fins, switch on
 - When 3He to CRES binding energy greater than some temperature, switch turns off
- Room-temperature fill level sets the transition temperature
 - 4 torr fill provides transition ~ 1.2 K
Superconducting Heat Switch

- Positioned between stages 1 and 2
- Two halves of switch separated by a length of lead wire
 - When lead in superconducting state, switch open
 - When lead in normal state, switch closed
 - Magnetic field from Helmholtz coil switches state
- Quick switching time
- Works in a temperature regime where gas in a GGHS is absorbed fully
S2,3 Salt Pill Suspensions

A total of 6 Kevlar bundles suspend the paramagnetic salt pill within the bore of a superconducting magnet

- Magnet temperature: 3 K
- Pill temperatures often below 1 K
- Kevlar assemblies made on the bench then installed
 - Button head screw on outside attachment point
 - “D-shaped” screw threaded through inner attachment point
 - Tensioned via a nut and locked with a second nut
- Estimated heat lead from 3 to 0.1 K: 4.4 µW
S4 Salt Pill Suspension

- 300 CRES bellows isolates one end
- Thin Vespel SP1 spool provides structural support
- Six Kevlar bundles suspend other end
Plots of Temperatures and Currents

- S1
- S2
- S3
- S4

Temperature (K)

Magnet Current (Amps)

Time (arbitrary start; sec.)
Plots of Temperatures and Currents
CADR was developed using research money provided by NASA/GSFC in the early 2000’s (Shirron et al.)

- Measured cooling powers and overall efficiency measured for that system
- Taking data on new system now and will compare the two systems
 - Expect new system to have a lower available cooling power due to stronger Kevlar suspensions

* Cooling power in addition to parasitic heat loads
Many Possibilities

Two, or more, unique continuous temperatures possible

• Asynchronous CADRs
• In this example, one is a 2 K, the other 0.050 K
Both 4-stage continuous ADRs built for the PIPER balloon mission and our external partner have completed testing.

One cooler demonstrated continuous operation below 45 mK with a total heat lift of > 5 µW at that temperature:
- Includes parasitic heat to coldest stage two stages
- Usable cooling power decreased by testing environment (vibrational heating from cooler in one case)
- Need to modify environment by either dampening cooler or moving to flight Dewar cooled via liquid helium

Second cooler modified to work from a 4.2 K liquid helium bath:
- Demonstrated greater than 6 µW heat lift in addition to parasitic heating while at 80 mK

Since the CADR has a higher cooling power for the same mass as a single-shot system, we are now baselining this technology will be baselined for future missions.