Human Mars Entry, Descent & Landing Architecture Study (EDLAS)

Rigid Decelerators

Tara Polsgrove, Thomas Percy, Jay Garcia
NASA Marshall Space Flight Center

Alicia Dwyer Cianciolo, Jamshid Samareh, Rafael Lugo
NASA Langley Research Center

Ed Robertson, Chris Cerimele, Ron Sostaric
NASA Johnson Space Center

AIAA SPACE 2018 September 17-19, Orlando, FL
Study Objectives

- Develop two evolutionary rigid vehicle concepts to deliver human scale payloads (20 metric ton) to the surface of Mars
 - Capsule
 - Lifting body, mid-range lift-to-drag ratio (Mid L/D)
- Determine vehicle configurations for various mission flight phases
- Determine vehicle performance:
 - Integrated system mass
 - Ability to meet landing constraints
 - Payload packaging and surface access
- Provide technology investment recommendations to NASA’s Space Technology Mission Directorate
Cargo Elements for Long Duration Surface Stay

10 m diameter SLS fairing; 300 day stay; Crew of 4; Four 20 t payloads

Lander 1
- Surface Power Units
- Unpressurized Rovers
- Cargo Off-loading
- Logistics Module
- Science Payloads

Lander 2
- Mars Ascent Vehicle
- Atmosphere ISRU
- Crew Access Tunnel

Lander 3
- Pressurized Rover
- Logistics module
 - Crew consumables
 - Fixed system spares
 - Mobile system spares
 - EVA spares
- Surface Mobility

Lander 4
- Habitation
Vehicle Summaries: Capsule

Vehicle Configuration

Sizing Assumptions:
• Soyuz Shape
• 3G limit during AC & EDL
• 10 m diameter heatshield - *Fairing interference, but potential to fly without a fairing*
• No Jettison events during EDL
• Ballistic coefficient = 500 kg/m²

Launch to Mars Landing Vehicle Configurations

EDL Concept of Operations

Entry
AOA = -20 deg
Velocity = 4.7 km/s
FPA = -10.6deg

Deorbit
Aft RCS Thrusters

Powered Descent Initiation (PDI)
Mach = 4.7 Alt = 9.8 km
Pitch up to 0 deg AOA

Approach
8x125kN engines
80% throttle

Touchdown
Capsule Mass

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Component</th>
<th>Quantity</th>
<th>Unit Mass (kg)</th>
<th>CBE (kg)</th>
<th>MGA %</th>
<th>MGA (kg)</th>
<th>MEV (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroshell</td>
<td>Heatshield Structure + TPS</td>
<td>1</td>
<td>1,893</td>
<td>1,893</td>
<td>35%</td>
<td>663</td>
<td>2,556</td>
</tr>
<tr>
<td>Backshell Structure + TPS</td>
<td>1</td>
<td>3,310</td>
<td>3,310</td>
<td>35%</td>
<td>1,158</td>
<td>4,469</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,025</td>
</tr>
</tbody>
</table>

CBE = Current Best Estimate
MGA = Mass Growth Allowance
MEV = Maximum Expected Value
Capsule Vehicle Configurations

Apollo Class (AIAA-2016-0219)

GE D-2 Apollo Concept
3.9 m (Arthur, 1963) diameter

Soyuz Class
2.7 m diameter

Recent studies considered heritage shapes with storable propellants (10 m diameter)

Earth human flight heritage; Shape has not flown at Mars

0.75 m ground clearance

10 m
Capsule Payload Packaging

Lander 1
- OK

Lander 2
- rework
 - LMO MAV (requires taxi)
 - Repackaged radiators

Lander 3
- rework
 - Logistics Module separate launch to fit

Lander 4
- rework
 - Habitat volume divided into 2 HABs

Design impacts of adding landers
- More launches (est. 5)
- Larger landing zone
- Modular Habitat; need way to connect them on surface
- Different payload masses per mission
- Additional architecture element (taxi)
- Extended delivery schedule
Capsule Performance

• **Landing Constraints**
 – Within 50 m of a target
 – At 0 km above reference areoid
 – 8-100 kN engines

• **Guidance Approach:**
 – Heritage Bank Angle with Pure Gravity Turn, thrust factor 1.875 (BNKPGT1875)
 – Direct Force Control with Augmented Gravity Turn, thrust factor 1.5 and 1.2 (DCFAGT15 and DCFAGT12)

• **Results**
Vehicle Summaries: Mid L/D

Vehicle Configuration

EDL Concept of Operations

Sizing Assumptions:
- 5 G axial, 2 G lateral load at launch on all concepts
- **Payload element structures need to be redesigned for horizontal launch orientation**
- 9.1 m max diameter in 10 m SLS fairing
- No Jettison events during EDL
- Ballistic coefficient = 380 kg/m²

Launch to Mars Landing Vehicle Configurations

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
<th>Phase 5</th>
<th>Phase 5a</th>
<th>Phase 6</th>
<th>Phase 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch</td>
<td>Earth Loiter & Stack Chase</td>
<td>Earth-Mars Flight</td>
<td>Mars Arrival</td>
<td>Mars Orbit Loiter</td>
<td>Crew Transfer</td>
<td>Entry, Descent & Landing</td>
<td>Surface</td>
</tr>
</tbody>
</table>

- **Deorbit**
 - Aft RCS Thrusters

- **Entry**
 - AOA = 55 deg
 - Velocity = 4.7 km/s
 - FPA = -10.8 deg

- **Powered Descent Initiation**
 - Mach = 1.98, Alt = 3.2 km
 - Pitch up to 90 deg AOA

- **Approach**
 - T/W = 1.25 Earth g
 - 8x125kN engines
 - 80% throttle
 - 10 deg outward cant

- **Touchdown**

Ground Operations
Mid L/D Mass

<table>
<thead>
<tr>
<th>ID</th>
<th>System</th>
<th>Without cargo bay door</th>
<th></th>
<th>With CBD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Basic (kg)</td>
<td>MGA (%)</td>
<td>Predicted (kg)</td>
<td>Basic (kg)</td>
</tr>
<tr>
<td>1.0</td>
<td>Structure</td>
<td>12318</td>
<td>20.0%</td>
<td>14782</td>
<td>12970</td>
</tr>
<tr>
<td>1.1</td>
<td>Primary Structure</td>
<td>10698.4</td>
<td>20%</td>
<td>12838.1</td>
<td>11482.4</td>
</tr>
<tr>
<td>1.2</td>
<td>Secondary Structure</td>
<td>1619.7</td>
<td>20%</td>
<td>1943.6</td>
<td>1487.7</td>
</tr>
<tr>
<td>2.0</td>
<td>Propulsion</td>
<td>4241</td>
<td>24.1%</td>
<td>5263</td>
<td>4241</td>
</tr>
<tr>
<td>3.0</td>
<td>Power</td>
<td>953</td>
<td>27.7%</td>
<td>1217</td>
<td>953</td>
</tr>
<tr>
<td>4.0</td>
<td>Avionics</td>
<td>269</td>
<td>23.7%</td>
<td>333</td>
<td>269</td>
</tr>
<tr>
<td>5.0</td>
<td>Thermal</td>
<td>675</td>
<td>25.0%</td>
<td>844</td>
<td>475</td>
</tr>
<tr>
<td>6.0</td>
<td>CobraMRV</td>
<td>4487</td>
<td>22.5%</td>
<td>5499</td>
<td>4027</td>
</tr>
<tr>
<td>6.1</td>
<td>Thermal Protection System (TPS)</td>
<td>2526.8</td>
<td>20.0%</td>
<td>3032.2</td>
<td>2526.8</td>
</tr>
<tr>
<td>6.2</td>
<td>Aerosurfaces</td>
<td>400.0</td>
<td>30.0%</td>
<td>520.0</td>
<td>400.0</td>
</tr>
<tr>
<td>6.3</td>
<td>Mechanisms</td>
<td>740.0</td>
<td>30.0%</td>
<td>962.0</td>
<td>280.0</td>
</tr>
<tr>
<td>6.4</td>
<td>Landing Gear</td>
<td>820.5</td>
<td>20.0%</td>
<td>984.6</td>
<td>820.5</td>
</tr>
<tr>
<td></td>
<td>DRY</td>
<td>22943</td>
<td>21.8%</td>
<td>27937</td>
<td>22935</td>
</tr>
<tr>
<td>7.0</td>
<td>Cargo</td>
<td>20000</td>
<td>0.0%</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>8.0</td>
<td>Non-Propellant</td>
<td>911</td>
<td>6.0%</td>
<td>966</td>
<td>911</td>
</tr>
<tr>
<td>9.0</td>
<td>Usable Propellant</td>
<td>43854</td>
<td>6.0%</td>
<td>48902</td>
<td>43846</td>
</tr>
<tr>
<td>9.1</td>
<td>Usable Propellant (MPS)</td>
<td>15018</td>
<td>15018</td>
<td>14998</td>
<td>14998</td>
</tr>
<tr>
<td>9.2</td>
<td>Usable Propellant (RCS)</td>
<td>9886.2</td>
<td>9886.2</td>
<td>9873.0</td>
<td>9873.0</td>
</tr>
<tr>
<td>9.3</td>
<td>Engine Start/Stop Transient</td>
<td>4905.3</td>
<td>4905.3</td>
<td>4898.7</td>
<td>4898.7</td>
</tr>
<tr>
<td></td>
<td>Usable Propellant (MPS)</td>
<td>226.6</td>
<td>226.6</td>
<td>226.6</td>
<td>226.6</td>
</tr>
<tr>
<td></td>
<td>Usable Propellant (RCS)</td>
<td>58872</td>
<td>63921</td>
<td>58845</td>
<td>63835</td>
</tr>
</tbody>
</table>

CBD = Cargo Bay Doors
MGA = Mass Growth Allowance
Mid L/D Vehicle Configurations

49% scale version in the Delta IV Heavy long and short fairings precursor payloads up to 10t
Design impacts

• Habitability of horizontal habitat orientation has not yet been assessed. May require more or less volume.
• Launch and landing loads on payloads are in different directions

Lander 4
Habitat volume reconfigured to horizontal orientation
Mid L/D Performance

- **Landing Constraints**
 - Within 50 m of a target
 - At 0 km above reference areoid
 - 8-100 kN engines

- **Guidance Approach:**
 - Bank angle Control with Alpha Modulation (BCAM)
 - With thrust factor 1.2 (BCAMTHR12)

- **Results**

![Histograms](image)
Launch Vehicle Integration

- **SLS Launch Fairing Options**
 - 10m diameter x 19 m or 27 m

- **Impacts of Flying Without a Fairing**
 - Launch vehicle aerodynamics & loads
 - Fairing subsystems carried all the way to Mars

<table>
<thead>
<tr>
<th>ID</th>
<th>Subsystem</th>
<th>No CBDs Predicted Mass (kg)</th>
<th>No SLS PLF Predicted Mass (kg)</th>
<th>No CBD with SLS PLF Predicted Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Structures</td>
<td>16,066</td>
<td>14,782</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Primary Structure</td>
<td>12,838</td>
<td>12,838</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Secondary Structure</td>
<td>1,944</td>
<td>1,944</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Structural Adjustment for Eliminating the PLF</td>
<td>1,284</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>Propulsion</td>
<td>5,263</td>
<td>5,263</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Power</td>
<td>1,217</td>
<td>1,217</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>Avionics</td>
<td>333</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>Thermal</td>
<td>844</td>
<td>844</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>Aero decelerator</td>
<td>6,790</td>
<td>5,499</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>TPS</td>
<td>3,032</td>
<td>3,032</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Aerosurfaces</td>
<td>520</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Mechanisms</td>
<td>962</td>
<td>962</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Landing Gear</td>
<td>985</td>
<td>985</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>SLS PLF-Specific Components</td>
<td>1,292</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>7.0</td>
<td>Cargo</td>
<td>20,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>Non-Propelled Fluids</td>
<td>966</td>
<td>966</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>Used Propellant</td>
<td>15,797</td>
<td>15,018</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Usable Propellant (MPS)</td>
<td>10,407</td>
<td>9,886</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Usable Propellant (RCS)</td>
<td>5,163</td>
<td>4,905</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>Engine Start/Stop Transients (MPS)</td>
<td>227</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Stage Gross Launch Mass</td>
<td>67,276</td>
<td>63,922</td>
<td>3.3 t heavier without fairing</td>
</tr>
</tbody>
</table>
Integrated Vehicle Mass

<table>
<thead>
<tr>
<th>ID</th>
<th>Subsystem</th>
<th>Capsule</th>
<th>CobraMRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Structures</td>
<td>5,422</td>
<td>14,836</td>
</tr>
<tr>
<td>2.0</td>
<td>Propulsion</td>
<td>5,215</td>
<td>5,190</td>
</tr>
<tr>
<td>3.0</td>
<td>Power</td>
<td>1,568</td>
<td>1,568</td>
</tr>
<tr>
<td>4.0</td>
<td>Avionics</td>
<td>333</td>
<td>333</td>
</tr>
<tr>
<td>5.0</td>
<td>Thermal</td>
<td>218</td>
<td>844</td>
</tr>
<tr>
<td>6.0</td>
<td>Aero decelerator</td>
<td>7,025</td>
<td>5,499</td>
</tr>
<tr>
<td></td>
<td>Dry Mass</td>
<td>19,781</td>
<td>28,270</td>
</tr>
<tr>
<td>7.0</td>
<td>Cargo</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>8.0</td>
<td>Non-Propelled Fluids</td>
<td>1,965</td>
<td>1,523</td>
</tr>
<tr>
<td></td>
<td>Inert Mass</td>
<td>41,746</td>
<td>49,793</td>
</tr>
<tr>
<td>9.0</td>
<td>Used Propellant</td>
<td>26,531</td>
<td>16,399</td>
</tr>
<tr>
<td></td>
<td>Total Stage Gross Launch Mass</td>
<td>68,277</td>
<td>66,192</td>
</tr>
</tbody>
</table>
Recommendations

• Down select to one rigid vehicle design: Mid L/D
 – Payload Packaging

• Determine the effects of different launch and landing load paths on payload structural design

• Perform extensive CFD analysis on SRP initiation and surface interaction phase

• Define *EDL GN&C sensor requirements* matrix (performance and software requirements and vehicle accommodation)
JOIN US ON THE JOURNEY
MARS