Life in Space: Microfluidic Systems Enable the Study of Terrestrial Microbes in Space and the Search for Life on the Solar System’s Icy Moons

Tony Ricco

NASA Ames Research Center

with thanks for insights, enlightenment, content: Richard Quinn, Chris McKay, Alfonso Davila, Niki Parenteau, Tori Hoehler, Mary Beth Wilhelm
Integrated Microfluidic Bioanalytical Systems:
Growing and Monitoring Microbial Cultures in Outer Space

GeneSat (2006)
- Orbit: Low Earth, 440 km
- Mission duration: 1 month
- Orbital lifetime: 3.7 years

BioSentinel (2019)
- Orbit: Interplanetary (heliocentric), 0.1 – 100 M km
- Mission duration: 6 – 12 months
- Orbital lifetime: ∞
Astrobiology & Space Biology

Astrobiology: origin, evolution, distribution, & future of life in the universe
- **Why:** fundamental understanding of life
- Understand details & distribution of prebiotic chemistry -- chemical building blocks of life
- Study potential for life to adapt/survive in extraterrestrial environments
- Search for indicators of extant or extinct non-terrestrial life
- Find habitable environments in our solar system & beyond

Fundamental Space Biology: effects of the space environment on terrestrial life
- Reduced gravity effects
 - Mammals: fluid distribution, musculoskeletal loading ⇒ immune stress, bone density decrease, muscle atrophy, slowed wound healing
 - Cells, microorganisms in culture: nutrient and waste transport
- Radiation effects: damage from (high-energy) ionizing radiation
 - Greater outside Earth’s magnetosphere, ~70,000 km
 - DNA damage: strand breaks, cell death, mutations
 - Cell membrane, protein, & oxidative damage
- Bio/chemical effects of extraterrestrial environments: lunar dust
- Synergies of combined μgravity & radiation effects possible
- **Why:** human space travel, moon/planetary habitation; insights & therapies for human disease, aging, radiation effects
Rationale – Why Small Sats?

- **Small Sats (< 50 kg) are ever more capable:** *Miniature/micro/nano technologies*
 - bioengineered organisms; (micro)fabrication; materials; optics; sensors; actuators; MEMS; fluidics; electronics; communications; instrumentation; data handling & storage
 - Power generation & storage density up; power consumption down

- **Access to space:** *Low-cost launches as secondary payloads*
 - *military, government, commercial; US, Russia, Europe, India, Japan, Canada …*
 - *Multiple flights possible - test, learn, iterate*

- **Excellent education vehicle:** > 100 universities participating worldwide

- **Autonomous operations:** Less reliance on human crew for operation

- **Technology migration:** ISS; landers/orbiters for moon, Mars, Ocean Worlds

PharmaSat
- 5.1 kg, 3U (2009)

O/OREOS
- 5.5 kg, 3U (2010)

PhoneSat
- 1U (2014)
NASA Ames - NanoSatellite Biological Space Missions

E. Coli
GeneSat-1 (2006/3U): *gene expression*
EcAMSat (2017/6U): *antibiotic resistance*

S. Cerevisiae
PharmaSat (2009/3U): *drug dose response*
BioSentinel (2019/6U): *DNA break/repair*

B. Subtilis
O/OREOS* (2010/3U): *survival, metabolism*
ADRoIT-M** (20xx/6U): *mutations / lithopanspermia*

Ceratopteris
SporeSat-1 (2014/3U): *ion channel sensors, μ-centrifuges*
Richardii
SporeSat-2 (20xx/3U): *plant gravity sensing threshold*

C. Elegans
FLAIR (20xx/3U):
dual-wavelength fluorescence imager

Organism/Organic Response to Orbital Stress
Active DNA Repair on Interplanetary Transport of Microbes
GeneSat-1: 1st biological nanosatellite in Earth orbit, 1st real-time, *in-situ* gene expression measurement in space

- ~ 0.5 x 2 µm bacteria
- nutrient deprivation in dormant state (6 weeks)
- launch: December 2006 to low Earth orbit (440 km)
- nutrient solution feed upon orbit stabilization, grow *E. coli* in μgravity
- monitor green fluorescent protein: gene expression
- monitor optical density: cell population

16 December 2006

Telemeter data to Earth

Compare to ground data
PharmaSat: **Effect of Microgravity on Yeast Susceptibility to Antifungal Drugs**

- Grow yeast in multiwell fluidics card in μ-gravity
- Measure inhibition of growth by antifungal
- Optical absorbance (turbidity: cell density)
- Metabolism indicator dye: Alamar Blue
- Control + 3 concentrations of antifungal

S. cerevisiae
O/OREOS Mission
Organism/Organic Response to Orbital Stress

Effects of space exposure on biological organisms (6 mos.) & organic molecules (18 mos.)

- Monitor survival, growth, and metabolism of *Bacillus subtilis* using *in-situ* optical density / colorimetry
 [SESLO: Space Environment Survival of Living Organisms]

- Track changes in organic molecules and biomarkers: UV / visible / NIR spectroscopy
 [SEVO: Space Environment Viability of Organics]

Flight prototype

Orbit today: 615 - 645 km
Orbital lifetime: ~ 22 yr

Kodiak, Alaska
Nov 19, 2010
O/OREOS Nanosatellite Exploded View

Santa Clara U.
3-m antennae

*SSEVO = Space environment viability of organics
*SESLO = Space environment survival of living organisms
SESLO (bio) Fluidic/Thermal/Optical Architecture

Fluidic / optical / thermal cross-section

- **Polycarbonate or ultem (polyamide)**
- **Gas-perm. membrane**
- **Optical quality / clear**
- **capping layer**
- **sapphire**
- **spreader w/ sensors**
- **Detector**
- **PC board**
- **PC board – 0.8 mm thick**
- **heater layer**
- **space radn.**
- **radFET**
- **LED**
- **nucleopore membrane (hydrophobic)**
- **nucleopore membrane (hydrophilic)**
- **2.8 mm**
- **12 mm**
- **Porous PTFE membrane**
- **Polycarb. + PVP**

- **Gas-perm. membrane**
- **Optical quality / clear**
- **capping layer**
- **sapphire**
- **spreader w/ sensors**
- **Detector**
- **PC board**
- **PC board – 0.8 mm thick**
- **heater layer**
- **space radn.**
- **radFET**
- **LED**
- **nucleopore membrane (hydrophobic)**
- **nucleopore membrane (hydrophilic)**
- **2.8 mm**
- **12 mm**
- **Porous PTFE membrane**
- **Polycarb. + PVP**
SESLO Integrated Fluidic System: 3 independent bioBlocks

- 3 independent bioBlocks
- 75 µL per well
- Growth medium A and B
- solenoid valves open 2x/day to maintain fluid back-pressure to compensate for evaporation from wells throughout organism growth period
- 10^7 spores/well
- distensible membrane
- reservoir for growth medium (zero viable organisms allowed)
- fluid distribution channel
- from air pump

Growth medium A and B are connected through solenoid valves. The system uses 75 µL per well and includes a reservoir for growth medium to ensure zero viable organisms are allowed. The distensible membrane helps maintain fluid back-pressure. Solenoid valves open twice a day to compensate for evaporation from wells throughout the organism growth period.
SESLO Design Summary

Thinned region of pressure vessel: *radiation window*

- Bus Interface
- Radiation Shield
- radFETs
- Thermal Control
BioSentinel Mission: Biological Effects of Deep-Space Radiation

1st Biology Experiment beyond Low Earth Orbit since Apollo (1972)

- **Limits of life in space, as studied to date:**
 - 12 days on a lunar round trip (furthest distance)
 - ~1.5 years in low Earth orbit (longest duration)

- **If humans are to go beyond LEO for longer times:**
 - model organisms can help us understand / mitigate biological risks
 - direct measure of factors that impact human health or performance
 - impact on biota that accompany humans
 - impact on organisms for processing waste or producing food

- **Interplanetary space: biological access enables new astrobiological studies in deep space’s complex radiation field**
 - microbial evolution, development, survival
 - demonstration of technologies relevant to life detection far from Earth
BioSentinel is a 14-kg free-flying 6U satellite to be delivered by NASA’s *Exploration-Mission 1* to a **heliocentric interplanetary orbit (~2019)**

- **Distance from Earth**
 - 10^8 km
 - 4•10^7 km
 - Millions km
 - 385,000 km
 - 330-435 km
 - 100 km

- **Mission Duration**
 - 20 min
 - 12 days
 - 6 mo
 - 12 mo
 - 18 mo
 - 36 mo

BioSentinel will conduct 288* optically-monitored microfluidic bioassays to track **DNA damage in interplanetary space** over a 6- to 18-month duration.

9 time points; 32 microwells/timepoint
Low Earth Orbit provides perfectly adequate μ-gravity

Answer: Radiation

- Space beyond Earth’s magnetosphere hosts a complex mixture of particle types
 - each particle type has its own energy spectrum
 - also: electromagnetic radiation extending into vacuum UV
- For some biological processes, **effects of chronic low dosage of multiple particle types & energies ≠ acute dose of 1 or 2 particle types, 1 energy**
 - Biology can self-repair. Solid-state materials, devices (generally) do not.
 - Repair (and mutation) can profoundly impact long-term radiation effects in biological organisms that are not simulated by non-living materials.
 - Cells communicate. Damage of a few cells can indirectly affect many others.
 - Cell lethality is typically not the main concern – the problem is those that survive a “hit”.
- High-radiation environments available in “special” cases of LEO
 - polar orbits, dense regions of Van Allen belts, So. Atlantic Anomaly
 - BUT these are not the same as deep space: GCR is shielded/modified by magnetosphere and SPEs are highly attenuated

Why Study (Astro)Biology in Deep Space?
BioSentinel: Deployed & Stowed

Deployed

Stowed
BioSentinel: Deployed & Stowed

- **Quantify DNA damage from space radiation environment**
 - Deep space environment cannot be reproduced on Earth: *omnidirectional, continuous, low flux, variety of particle types*
 - Health risk for humans spending long durations beyond LEO
 - Radiation flux can spike 1000x during a solar particle event (SPE)

- **Yeast assay: microfluidic arrays monitor DNA damage**
 - Two strains of *S. cerevisiae*: 1 control (wild-type), 1 engineered
 - *engineered strain is sensitive to DNA damage, esp. double-strand breaks (DSBs)*
 - Wet and activate multiple banks of yeast in µwells over mission duration
 - DNA damage impairs cell growth & division, esp. for ∆rad51 mutant
 - Reserve wells for solar particle event: autonomous activation

- **Correlate biological response with physical radiation measurements**
 - *Linear Energy Transfer* (LET) spectrometer bins and counts particle events by their LET
 - Total Ionizing Dose (TID): calculation of integrated deposited energy by LET system
BioSensor Payload Configuration

- **Optical absorbance measurement per well**
 - Dedicated 3-color optical system at each well
 - Measure dye absorbance & optical density (cell population) with stray light correction
 - Ground pre-calibration + in-flight “active” cal.

- **Pressure & humidity sensors** in P/L volume

- **Dedicated thermal control system per card**
 - 16 – 23°C; 1 °C uniformity, accuracy, stability
 - 1 RTD sensor per card: closed-loop control
• Yeast dried onto µwell walls prior to integration & launch
• Pairs of 16-µwell cards wetted periodically
• 3 LEDs + detector, per well, track growth via optical density and cell metabolic activity via dye color changes.
• LEDs: 570, 630, 850 nm
16-well card = 1 “set”
(18 sets total)
BioSentinel Biofluidic Subsystem

Tally of components:
- 2 pumps, 2 main bubble traps
- 24 active valves, 38 check valves
- 16 fluidic cards with 16 small bubble traps, 16 desiccant traps, 288 wells total

Manifold-integrated components:
- active & check valves
- bubble traps
- desiccant traps
- optical calibration cells

9-fluidic-card manifold (144 wells) [1 of 2]

Reagent-and-pump manifold [1 of 2]
Total Ionizing Dose (Si) in 1 year: Ambient Flux + possible SPE(s)

Flux (1 year) vs. linear energy transfer (LET) of particles for varying shielding thickness
LET “spectrometer”: TimePix solid-state device
- measures linear energy transfer spectra
- time-over-threshold (TOT) mode. Wilkinson-type ADC
 - direct energy measurement per pixel
- LET 0.2 – 300 keV/µm into 256 bins, each 3% width; store hourly bin totals
- Download “local space weather” periodic snapshots
- Also reports TID (total ionizing dose)

SPE Trigger: TID rate increase causes wet-out of a pair of fluidic cards
- Ground command as backup
Searching for Extant Life

1. Exploration Targets
 - Mars
 - Ocean Worlds (Europa, Enceladus)
 - Exoplanets

2. Science Approaches
 - Life
 - Habitability
 - Biosignatures/biomarkers
 - Life Detection

3. Technology Approaches
 - Enabling and New Tech Development
Exploration Targets

Follow the water!

Mars

Enceladus

Europa

NASA
Exploration Methodologies

• Contemporary Tools for (Mars) Exploration
 ✓ Rocks, Dirt, Atmospheres
 ✗ Endogenous Water/Ice

• Flight Predecessors Limited
 ➢ Viking “Biology” Experiments
 ➢ Focus turned to habitability
 ➢ Mars Phoenix Wet Chemistry Laboratory

• To seek life: New Class of “Life Search” Instruments needed

• *Automated* (Micro)fluidic Systems with Sensors to enable Full Autonomy

• New methods for contamination control

• Leverage Biotech, Biomed, Process control
Life Detection Approaches

aspects of life likely to be universal

- “Simple” chemical building blocks
- Complex biomolecules
- Cellular structures

Arguably, all are required for life to exist in an ocean world

- Combined, these indicators could provide conclusive evidence of life
- **What technologies can enable the search in an icy-moon environment?**
(Partial) Traceability Matrix

<table>
<thead>
<tr>
<th>Measurement Target</th>
<th>Observed Parameter</th>
<th>Life Detection Rationale</th>
<th>Analytical Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular building blocks</td>
<td>Chirality</td>
<td>Enantiomeric excess: distinct feature, arguably necessary for biochemistry, e.g. amino acids, saccharides</td>
<td>Capillary Electrophoresis Mass Spec</td>
</tr>
<tr>
<td>Functional molecules</td>
<td>Catalysis</td>
<td>Enzymatic change; facilitated electron transfer: search by function, not specific molecule</td>
<td>Electrochemical BioSensors Mass Spec</td>
</tr>
<tr>
<td>Biogenic organic polymers</td>
<td>‘Simple’ polymers to build & contain</td>
<td>Amphiphilic polymers: construction materials for cellular life’s structures & containments in aqueous environments, e.g. lipids, particularly fatty acids</td>
<td>Mass spec Capillary Electrophoresis</td>
</tr>
<tr>
<td></td>
<td>‘Complex’ polymers to store & transfer information</td>
<td>High molecular weight polymers made of subunits with (1) diversity to store information and (2) means to interact or dissociate to transfer information, e.g. poly nucleic acids</td>
<td>Sequencing Mass Spec</td>
</tr>
<tr>
<td>Containment structures</td>
<td>Whole cells or membrane fragments</td>
<td>Containers and barriers: Key to even the simplest forms of terrestrial life, e.g. containment and separation (membrane-like) structures</td>
<td>Fluorescence Microscopy with staining/labeling</td>
</tr>
</tbody>
</table>
Analytical Measurement Technologies (Instruments): Critical Performance Parameters and Selection Basis

- Measurable analytes (amino acids, lipids, ions, ...)
- Limit of detection (LOD) [≠ sensitivity]
- Dynamic range
- Physical characteristics: size, mass, power, data, thermal
- Heritage / maturity
- Complementarity/orthogonality to the rest of the suite
Microchip Capillary Electrophoresis (MCE)

Chiral Separations (Amino Acid)
ARC Cubestat Microfluidic Sample Handling and Processing Heritage
Laser-Induced Fluorescence Detection
NASA JPL and SBIR Partnership
Electrochemical Detection of Biological Catalysts as Signatures of Life

ARC Center Innovation Fund
Electrochemical Extant Life Detection
Phoenix Wet Chemistry Laboratory Lineage
Solid-State Nanopore Life Detection Technology

Concepts for Ocean worlds Life Detection Technology (COLDTech)

Detection of multiple types of biopolymers

Major Partner: UCSC

Oxford MinION Inspired

Robust silicon nitride nanopore membranes for flight missions

Oxford Nanopore
Biological nanopore membrane

Rudenko et al. 2011
LifE: Luminescence Imager for Exploration

Fluorescence Microscope for Ocean World Life Detection

COLDTech Development: Automated Analytical Fluidic-Platform

FLAIR: Fluorescence Analysis for In-situ Research on Nanosatellites

2U dual-wavelength fluorescence + fluidics imager payload
Building on what we Know How to Do: Ames Pioneering CubeSat* Biological Space Missions

EcAMSat (2017): antibiotic resistance

S. Cerevisiae PharmaSat (2009): drug dose response
BioSentinel (2020): DNA damage

B. Subtilis O/OREOS** (2010): survival, metabolism
ADRoIT-M*** (20xx): mutations / lithopanspermia

Ceratopteris SporeSat-1 (2014): ion channel sensors, µ-centrifuges
Richardii SporeSat-2 (20xx): plant gravity sensing threshold

C. Elegans FLAIR (20xx): dual-wavelength fluorescence imager

*All are either 3U or 6U form factor
**Organism/Organic Response to Orbital Stress
***Active DNA Repair on Interplanetary Transport of Microbes
Astro/biological Space Missions as a Source of Enabling Technologies*

Organism/Organic Response to Orbital Stress (3U/2010)

Astrobiology Payload

1. **1U Payload 1:** *B. Subtilis*
 - 6 months: Survival, Metabolism

2. Perfect Sterility
 - 11 months

3. Hydrophobic Membrane for Air Expulsion

4. High-radiation LEO (72°, 650 km)

5. Functional for 5 years

ARC is the leading center for implementation of automated fluidics systems in space
Enabling Technologies: Key Functionalities of Ames Bio-Cubesats

Sample Processor for Life on Icy Worlds (SPLIce)

• sensitive bioanalysis

• requirement for perfect sterility
• ultra-low mass/volume/power budgets
• localized precision thermal control (± 1 °C typ)

• ultra-low organic surface & volatile contamination, biocompatible materials
• materials selection: non-reactive interfaces between polymers, metals, ceramics
• precision electrical/optical measurements in an environment w/ fluids nearby
• extended stasis for fluid & reagent systems (up to 2 years for BioSentinel)
• managing gas/fluid interfaces, elimination of bubbles, expulsion of air (N₂)
• handling µL fluid volumes; flying dry, then wetting out a fluidic system

• maintaining 1 atm in space environment with ultralow leakage
• managing sample pH
• managing a humid, potential condensing environment
• accounting for radiation effects on polymers (tested to 4 Mrad)
Fluidics Processor

1. Deliver extraction solution
2. Retrieve sample with particles
3. Separate particles [3a. Add dye]
4. Degas / de-bubble
5. Dilute
6. Adjust ionic strength
7. Remove interfering ions
10. Adjust solvent polarity
11. Concentrate samples
12. Reconstitute standards/reagents
13. Provide calibration standards
14. Provide controls / blanks
15. Deliver particle-free aliquots

- **Fluorescence microscopy**
- **Microchip capillary electrophoresis w/ laser-induced fluorescence**
- **Mass spectrometry w/ electrospray or (MA)LDI “front end”**
- **Electrochemical biosensors**
- **Ion-selective electrodes [Habitability]**
- **Ion chromatography [Habitability+]**
- **Raman spectroscopy**

Instrument Suite
Integrated Life Detection Payloads

Sample Processor for Life on Icy Worlds (SPLIce): COLDTech (SMD)

- *Tech. dev. tailored to Enceladus & Europa targets*

Partners: APL, JPL, GSFC, Tufts

SPLIce Engineering Team
Integrated End-to-End Life Detection System Concept

Major Partners: APL, GSFC, & JPL

Plume Ice Collector (EFun COLDTech)

- Microfluidic Processor (SPLIce COLDTech)
- Microchip Capillary Electrophoresis
- micro-Wet Chemistry Laboratory
EFun + SPLIce = µCAFE: microChemical Analyzer of Fluids for Exobiology

fluidics process flow

- Collector
- Sample chamber
- Pump contains 50 µL (1 drop)
- Concentrator
- Buffer
- Label
- Calibrant
- MCE
- mWCL
- GCMS

- Sample flow
- H₂O/buffer/calibrant flow

- N₂ @ 1 atm
- 4 °C

- 50 µL fluidics process flow
PLAY TO YOUR STRENGTHS!

• Deep Knowledge of the scientific challenge is crucial
 – excellent astrobiologists necessary to create a winning astrobiology mission!

• Technological solutions can/should be adapted from everywhere
 – don’t drive screws with a hammer –
 – but if your screwdriver has a massive handle, it may be a great nail driver

• Experience & Heritage can give you a Massive Advantage
 – powerful to have already done approximately what you need to do: spaceflight missions are too challenging to start from scratch

• Science and Engineering must work hand in hand
 – no chucking things over the fence!

• Creativity is most powerful as a means to adapt, rather than an excuse to ignore
Questions?