X-ray Optics Development at NASA MSFC

D. Broadway
• X-ray optics for space-borne applications
• Electroformed NiCo X-ray optics at MSFC
• Thin film coatings to enhance X-ray optical performance
• Thin film stress
• In-situ film stress measurement at MSFC: from prototype to refined design
• Ultra lightweight aerogel mirrors
X-ray optics for space-borne applications (Wolter I)

Segments assembled into full shells

Lynx will require 37,492 segments! Segments are only ~400 µm thick!
Electroformed X-ray optics at MSFC

- Up to 0.5 m diameter
- Down to 0.025 m diameter
- Down to 50µm thick
- Up to 0.5 m diameter
- Down to 0.025 m diameter
Electroforming replication process at MSFC

1. CNC Machine, Mandrel Formation From Al Bar
2. Chemical Clean and Activation & Electroless Nickel (EN) plate
3. Precision Turn to 600Å, sub-micron figure accuracy
4. Polish and Superpolish to 3 - 4Å rms finish
5. Metrology On Mandrel

Shell Fabrication

6. Ultrasonic clean and Passivation to Remove Surface Contaminants
7. Electroform Ni/Co Shell onto Mandrel
8. Separate Optic From Mandrel in Cold Water Bath
Thin film coatings to enhance X-ray reflectivity

- Multilayer thin-film reflective coatings
 - Needed to efficiently reflect light at the high-energy region of the spectrum, from EUV to hard x-rays.
 - Periodic multilayers are used as selective optical elements due to their inherently narrow spectral response.
 - At EUV energies they can be designed to reflect at normal incidence.
 - Enabled the fabrication of Cassegrain-type EUV reflecting telescopes.

- A depth-graded multilayers is a film stack containing a range of layer thicknesses.
 - They are designed to give a spectral response at grazing incidence this is several times broader than the total external reflection regime of a single layer films.

The stress in these coatings will severely deform thin, precisely figured substrates and degrade imaging quality.
X-ray reflectivity from the multilayer

Modified Fresnel coefficient:

\[
r = r_0 e^{-\frac{8\pi^2 \sigma^2}{k^2} \sin^2(\theta_0)}
\]

Roughness influence on first order reflectivity

\[
R = \frac{1}{2} R^s + \frac{1}{2} R^p
\]

\[
R^v = S^v S^{v*}
\]

Graph:

- **W/Si, N=200, \(\Gamma=0.25, d=25\text{Å} \)**

\[
\sigma = 3 \text{ Å} \quad \sigma = 3.3 \text{ Å} \quad \sigma = 3.5 \text{ Å} \quad \sigma = 3.7 \text{ Å} \quad \sigma = 4.2 \text{ Å}
\]

Equations:

\[
\begin{align*}
\beta_{N-j} &= \frac{2\pi \hbar_{N-j}}{k} \sqrt{1 - \frac{\cos^2(\theta_0)}{n_{N-j+1}^2}} \\
S^v_{j+1} &= \frac{r^v_{N-j} + S^v_j e^{2i\beta_{N-j}}}{1 + r^v_{N-j} S^v_j e^{2i\beta_{N-j}}} \\
R^s &= \sqrt{\frac{n_{N-j}^2(\lambda) - \cos^2(\theta_0)}{n_{N-j+1}^2(\lambda) - \cos^2(\theta_0)}} - \sqrt{\frac{n_{N-j+1}^2(\lambda) - \cos^2(\theta_0)}{n_{N-j}^2(\lambda) - \cos^2(\theta_0)}} \\
R^p &= \frac{n_{N-j}^2(\lambda)}{n_{N-j+1}^2(\lambda)} \sqrt{\frac{n_{N-j+1}^2(\lambda) - \cos^2(\theta_0)}{n_{N-j}^2(\lambda) - \cos^2(\theta_0)}} - \sqrt{\frac{n_{N-j}^2(\lambda) - \cos^2(\theta_0)}{n_{N-j+1}^2(\lambda) - \cos^2(\theta_0)}}
\end{align*}
\]

\[
d \equiv h_A + h_B
\]

D. Broadway NASA MSFC
Thin Film Stress

• The stress can be compressive or tensile.

• Various components of stress:
 - Intrinsic, σ_i, which is related to the film’s microstructure.
 - Thermal stress, $\sigma_{\Delta CTE}$, which arises due to the difference in the linear expansion coefficient between the film and substrate and the difference between substrate temperature, T_s, during deposition and subsequent cooling to room temperature:
 \[\sigma_{\Delta CTE} = M_f (\alpha_s - \alpha_f) \Delta T \]
 - Extrinsic, σ_{ext}, that results due to external forces applied to the film substrate system such as bending of the substrate to produce a figured optic.

• The film stress can be enormous for some materials (i.e. GPa’s)

• The curvature, κ, of the deformed substrate is proportional to the product of film stress and film thickness, σh_f, through a constant that describes the geometric and mechanical properties of the substrate (Stoney’s Equation)--namely, the substrate’s thickness, h_s, and biaxial modulus, E_s:
 \[\sigma h_f = \frac{E_s h_s^2}{6(1 - \nu_s)} \kappa \]

D. Broadway NASA MSFC
In controlling film stress, the aim is to manipulate the energy of the sputtered atoms and influence the adatom mobility at the film surface.

For a given material, stress is highly process dependent for magnetron sputtering and influenced by deposition conditions:
- Gas Pressure (stress reversal)
- Deposition Rate (cathode power)
- Substrate Temperature
- Substrate bias

There is a trade-off between film stress and film quality (i.e. roughness, density).
- Generally, the deposition conditions needed to achieve good X-ray reflectivity result in high film stress.
Detrimental effects of high film stress:

- Cracking, buckling and delamination
 If the force per unit length due to the stress in the film exceeds the adhesive force, delamination of the film will occur.

- Substrate deformation
 - Of particular concern for grazing incidence X-ray optics since the stress can alter the precise geometrical figure and degrade its focusing or collimating properties.
 - Significant technological challenge for the next generation of lightweight X-ray space telescopes like Lynx:
 - The desire to achieve sub-second resolution has motivated deposition techniques to correct substrate figure errors which rely on a very low stress film (ie. A few MPa)
 - Substrates are only 10’s of microns thick.
 - The X-ray reflective Ir layer is highly stressed (~4 GPa)
The film will delaminate if the stress is greater than the adhesion between the film and substrate.
Measurement of thin film stress (ex-situ)

Stoney's Eqn: \(\sigma_h = \frac{E_s h_s^2}{6(1-\nu s)} \kappa \)

\[\kappa_x = 0.0212 \text{ and } \kappa_y = 0.0214 \text{ m}^{-1} \]

Spherical Deformation Mode:
\[A = \sigma h \frac{D_s^2}{h_s^3} \]

Tallysurf stylus profilometer

\(\kappa \approx \frac{d^2 w}{d^2 x} = \text{const} \)
Since substrate deformation is spherical we need only measure the sag, \(\delta \), to infer its curvature.

\[
\sigma h_f = \frac{E_s h_s^2}{6(1 - \nu_s)} \kappa, \text{ where } \kappa = \frac{2\delta}{r^2 + \delta^2}
\]

The curvature measurement is performed during deposition by measuring the backside of a double side polished substrate with a non-contact variation of the classic spherometer using a high resolution fiber optic displacement sensor.

Patent granted: US 9,601,391 B2
The prototype
Minimum force per unit width:

\[
\Delta(\sigma h_f) = \frac{4}{3} \frac{E_s}{(1 - \nu_s)} \left(\frac{h_s}{D_s}\right)^2 \Delta\delta
\]

Minimum force per unit width for 280 µm Si <111>, 1 in. dia. substrate:

\[
\Delta(\sigma h_f) = 15 \text{ MPa} \times \text{ nm}
\]

This means for example that:

A film with \(\sigma_i = 100 \text{ MPa}\) ⇒ \(\Delta h_f = 6.7 \text{ nm}\)

For smaller values of stress, we can enhance the sensitivity by utilizing thinner substrates.

\[
\sigma h_f = \left(\frac{h}{h_0}\right)^2 (\sigma h_f)_0
\]

\(\Delta h_f = 8.5 \text{ Å} \) for 100 µm substrate
Raw data must be corrected for thermal expansion error

\[\delta(t) = \delta_0(t) - 0.039T_s(t) \]
As a check of the results we can compare the measured contribution of the stress resulting from the mismatch in the thermal expansion coefficient between the film as substrate, $\sigma_{\Delta CTE}$, to the calculated value using bulk constants for chromium to:

\[
\sigma_{\Delta CTE}^{\text{calc}} = 46.8 \, \text{MPa}
\]
\[
\sigma_{\Delta CTE}^{\text{measured}} = 44.7 \, \text{MPa}
\]

Agreement to within 4.5%
Variation of instantaneous stress with Ar process pressure

Several data points can be collected in a single deposition run
Stress reversal in Cr with argon pressure has been measured with the instrument. Consistent with the previous work of Hoffman (i.e. stress reversal).

Results are consistent with D.W. Hoffman, Internal stress of sputtered Chromium, Thin Solid Films, 40 (1977) 355-363

Measurement sensitivity is better than resolution in the control of Argon pressure.
Stress reversal cond’t

- Iridium exhibits stress reversal at high argon pressure (~22 mTorr)
- At this pressure the film’s microstructure causes surface roughness that exceeds the tolerable limit of 4-5 Å for soft X-rays
- We can’t use the stress reversal mechanism to achieve zero stress in Ir films
Film stress and microstructure

Type I: high T_m, low atomic mobility
Type II: low T_m, high atomic mobility

Volmer-Weber Growth Mode

Depends on:
- Substrate temperature
- Argon pressure
- Mass of sputtered atoms
- Substrate bias
- Surface energy

Island coalescence

Surface roughness increases with film thickness

Nucleation and growth

Low surface roughness

D. Broadway NASA MSFC
Stress in Iridium

Iridium intrinsic force per unit width

Zero stress @ 16.5 mTorr

-3.7 GPa
Near-zero stress in Iridium

Reduction in the total stress by 3 orders of magnitude (i.e. to -2.89 MPa)

Good adhesion

Promising result: 5Å rms roughness

Further reduction in the roughness is possible through optimization of Ar pressure
Refined approach: Cantilever substrate

Stoney Eqn. for cantilever:

\[
\sigma h_f = \frac{E_s h_s^2 \delta}{3(1 - \nu_s)L^2}
\]

\[\Delta(\sigma h_f) = 9 \text{ MPa} \times \text{nm}\]

- The use of cantilever substrates can theoretically provide a four fold increase in measurement sensitivity in comparison to circular substrates of a similar thickness and characteristic dimension (Ds~L)
- The vibrational noise, however, also increases resulting only in a factor of ~1.7 improvement.

Normalized Frequency Distribution

\[3\sigma = 30.3 \text{ nm}\]

D. Broadway NASA MSFC
In-situ stress of single layer thin films

$T_s \sim 27-30^\circ C$, 2.5 mTorr Ar
100µm thick Schott D263

Calibration masses placed on cantilever tip used to validate substrate modulus and linear range of the sensor:

$$\delta_m = \frac{2mgx^2}{E_s bh^3} \left(3L - x\right)$$

Where:
- m: Mass of calibration mass
- x: Displacement of the tip
- E_s: Elastic modulus of the substrate
- b: Width of the substrate
- h: Thickness of the substrate
- L: Length of the substrate

x-axis:
- $0, 3, 6, 9, 12, 15$ to $0, 30, 60, 90, 120, 150$

y-axis:
- $-25, -20, -15, -10, -5, 0, 5, 10, 15, 20$

Legend:
- **a-Si**
- **W**
- **Cr**
- Type I
- Type II
Device performance

Graph 1:
- δ, µm vs. t, sec.
- δ ranges from -40 to 20 µm.
- t ranges from 0 to 400 seconds.
- A peak at -199 MPa is observed.
- 3.38 nm mark indicates a specific layer.

Graph 2:
- R, % vs. θ, deg.
- R ranges from 10^-3 to 10^6.
- θ ranges from 0.0 to 3.0 degrees.
- Model and Measured lines are shown.

Graph 3:
- δ, µm vs. t, seconds
- δ ranges from -25 to -20 µm.
- t ranges from 225 to 240 seconds.
- ±2.5 % run-to-run repeatability
- ±0.5% within run repeatability

Graph 4:
- σhf, MPa*nm*10^3 vs. bilayer index, i
- σhf ranges from -6.0 to 0.0 MPa*nm*10^3.
- i ranges from 5 to 20.

Additional Information:
- Γ=0.38
- d=3.38nm
- σ=0.40nm

Run #1, Run #2, Run #3, Average

ΔδW, ΔδSi, Δε

±2.5 % run-to-run repeatability

±0.5% within run repeatability

D. Broadway NASA MSFC
Effect of material interfaces on the film stress (W, Cr-based)
In-situ stress in W/Si multilayers

$T_s \sim 30^\circ C$

Schott D263

$\xi_W \sim 0.13$ nm/sec

$\xi_{Si} \sim 0.18$ nm/sec

W

Si

d ~ 6.8 nm

$\Gamma \sim 0.80$

$\sigma \sim 0.45$ nm

6X10^4 MPa*nm

d ~ 7.3 nm

$\Gamma \sim 0.80$

$\sigma \sim 0.45$ nm

W

Si

d ~ 3.4 nm

$\Gamma \sim 0.38$

d ~ 6.8 nm

$\Gamma \sim 0.38$

W

Si

W. Broadway NASA MSFC
Second refinement with advanced capability (ongoing)
Comparison to state-of-the-art stress measurement:

Multi-beam stress sensor (MOSS):

Minimum detectable stress $\Delta \sigma_{\text{h}}$:
- Ranges from 0.5-50 MPa*nm depending on method and substrate (i.e. geometry and mechanical properties)
- MOSS is 50 MPa*nm for 100 µm thick silicon substrate

Draw backs with current optical methods:
- Requires external optical access to the substrate through angled viewports
- Limited to specific deposition geometries
- Complex
- Requires the use of opaque substrates such as crystalline silicon.
- Film side is measured which can result in destructive interference effects when measuring transparent films.

D. Broadway NASA MSFC
Replicated silica aerogels for ultra lightweight mirrors

Rapid supercritical extraction method (RSCE)
Partner: Union College NY

Mixture of precursors and nanoparticles (sol gel)

The gel is a colloidal systems in which a nanostructured network of interconnected particles spans the volume of the liquid.

If the liquid in the gel is simply allowed to evaporate, capillary stress would collapse the gel’s delicate solid framework. Therefore, a process of supercritical drying is used.

An autoclave is used to heat/pressurize the liquid past its critical point where it is transformed into a supercritical fluid. The supercritical fluid loses all surface tension and can no longer exert capillary stress. Isothermal depressurization at the critical temperature is then used to transform the supercritical fluid to a gas.

Dry, low-density, porous, solid framework of the gel. Typically
95-99% air/vacuum by volume.
Planarization, optical coating of areogels

Magnetron Sputtering

Ion Source

Tunable KE 1-1000keV

Sequentially or concurrently

Ion assisted deposition, ion figuring (optional)

Optical performance
- Specular reflectivity
- Light Scattering
 - Imaging Resolution

Tolerable micro roughness, \(\sigma \), increases with wavelength of incident radiation:
- \(\sigma < 3-5 \, \text{Å} \) for x-rays
- \(< 1-3 \, \text{nm} \) for visible light

Adatom mobility

Optical performance

Film microstructure

Surface roughness

Process conditions
- Gas pressure
- Temperature
- Mass of sputtered species
Thank you!