Studying land-atmosphere feedbacks via coupling of the global carbon cycle

Eunjee Lee

with Randal Koster, Fanwei Zeng, Lesley Ott, Sarith Mahanama, Brad Weir, Benjamin Poulter

September 20, 2018
Overview

1. NASA GMAO

2. Impact of atmospheric CO$_2$ variability on the global land carbon fluxes

3. AGCM study with fully coupled carbon-water-energy cycles between land and the atmosphere
Satellites Support Earth System Science
• Central theme is to use, support, and plan for NASA’s Earth Observations
• Goddard Earth Observing System (GEOS) model and data assimilation system central to all components
• Modular system is highly flexible, can be configured to increase complexity depending on application
• Aerosol, carbon, and composition cut across, represented in each theme
Connecting the land and atmospheric branches of the carbon cycle
Simulating land-atmosphere feedback

A new capability in the NASA GEOS system:
(i) allows modeled atmospheric CO₂ to affect land surface carbon uptake, and
(ii) uses modeled net CO₂ uptake at the land surface as a source or sink for the atmospheric CO₂,
(iii) thus enables carbon cycle feedbacks alongside water & energy cycle feedbacks
How sensitive are the land carbon fluxes to the atmospheric CO₂ variability?

- Is the common practice of using annually increasing global CO₂ in the offline LSM/TBM studies good enough?
- The sensitivity of terrestrial carbon cycle fluxes to multiple facets of the spatiotemporal variability in atmospheric CO₂ is quantified.
- Model: Offline Catchment-CN model
- Meteorological forcing: MERRA-2
- CO₂ forcing: NOAA CarbonTracker

The impact of spatiotemporal variability in atmospheric CO₂ concentration on global terrestrial carbon fluxes

Eunjee Lee1,2, Fan-Wei Zeng3,4, Randal D. Koster5, Brad Weir1,2, Lesley E. Ott6, and Benjamin Poulter4

1 Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD 21046, USA
2 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
3 Science Systems and Applications, Inc., Lanham, MD 20706, USA
4 Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Correspondence: Eunjee Lee (eunjee.lee@nasa.gov)

Received: 13 April 2018 – Discussion started: 20 April 2018
Revised: 31 August 2018 – Accepted: 3 September 2018 – Published: 20 September 2018
• Land component in NASA GEOS system
• Merger of Catchment LSM & CLM4 CN dynamics
• Based-on tiles (subsets of catchments)
• Each land surface element (i.e., tile) is subdivided into three static vegetation zones (valley bottoms, lower hill slopes, and upper hill slopes)
• Soil moisture and temperature information from the dynamically varying hydrological zones are area-weighted for the fixed vegetation zones

• References
 • Model description: Koster et al. (2014), *J Clim*
 • GPP, NBP validations: Lee et al. (2018), *Biogeosciences*
Meteorological forcing: MERRA-2

- NASA GMAO reanalysis product
- Available for 1980-present
- 0.5° x 0.625°
- Hourly
- https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
The temporal variability in CO₂ compensates for mean global GPP increase due to the spatial variability, reducing overall global GPP. Consideration of the diurnal variability in atmospheric CO₂ reduces mean global annual GPP by 0.5 PgC/yr and net land carbon uptake by 0.1 PgC/yr.

Figure 4. (a) Change in mean global GPP (Pg C month⁻¹) due to removal of diurnal variability in atmospheric CO₂ concentration (i.e., GPP from the dCO₂ experiment minus that from the control). (b) Map of time-averaged GPP changes as a percentage (%). The tile-based model GPP values were aggregated to 2° × 2.5° for visualization purposes.
Contribution of each variability in atmospheric CO$_2$ may differ seasonally and regionally

Figure 8. Regional- and seasonal-scale impacts of spatiotemporal CO$_2$ variabilities on GPP. Incremental change in GPP associated with each added facet of CO$_2$ variability is shown as a percentage of the previous experiment’s regional GPP. The map in (l) shows the regional boundaries of TransCom land regions (reconstructed from the basis function map in http://transcom.project.asu.edu/transcom03_protocol_basisMap.php, last access: November 2017).
Summary and implication to the land-atmospheric feedback studies

1. The Coupled Model Intercomparison Project Phase 6 (CMIP6) has recently proposed increased spatial and temporal resolutions for the surface \(\text{CO}_2 \) concentrations used to calculate GPP, and this study offers a full set of evaluation of the consequences of the increased resolution for carbon cycle dynamics.

2. In terms of estimating global GPP, the magnitudes of the sensitivities are minor, indicating that the common practice of applying spatially uniform and annually increasing \(\text{CO}_2 \) (without higher-frequency temporal variability) in offline studies is a reasonable approach.

3. For certain regional and seasonal-scale GPP estimations, the proper treatment of spatiotemporal \(\text{CO}_2 \) variability appears important.
A new capability in the NASA GEOS system:
(ii) allows modeled atmospheric CO$_2$ to affect land surface carbon uptake, and
(iii) thus enables carbon cycle feedbacks alongside water & energy cycle feedbacks.
To what extent do changes in T, P and CO₂ driven by a regional Spring drought affect land carbon fluxes and productivity?

- Two sets of 80-member ensembles of free running GEOS AGCM simulations
- Control ensemble vs. DryS ensemble
 - Control ensemble is with no imposed artificial drought
 - DryS ensemble is with an artificially imposed drought on Region S (boxed region) from April to June, followed by a 3-month recovery period
- 2012 SST was applied for all members

...leads to lower soil water and leaf area index (LAI) during April to September

⇒ Reduced GPP and net carbon uptake by land
⇒ Increased atmospheric CO₂ across the US.

Δ mean model surface CO₂ during recovery period (JAS)
(anomaly relative to no drought ensemble suite)
Impact of a regional drought on local and proximate C exchange and atmospheric CO₂ via the water-carbon feedback processes

To what extent do changes in T, P and CO₂ driven by a regional Spring drought affect land carbon fluxes and productivity?

- A Spring drought has a footprint on land carbon dynamics that persists during the recovery period.
- The drought affects the carbon productivity in neighboring areas, mostly due to remote changes in temperature and water availability.
- The carbon flux change due to the induced CO₂ fertilization acts only slightly to mitigate the meteorology effects.
Ongoing work
Land carbon flux vs. atmospheric transport

What are the relative contributions of land carbon fluxes and atmospheric transport to spatiotemporal variations in atmospheric CO$_2$?

- GEOS AGCM simulations in replay mode
 - Forces the model to reproduce the weather systems captured by the MERRA-2 reanalysis
 - In the control AGCM simulation, the land carbon fluxes and the atmospheric CO$_2$ concentrations, as well as the meteorology, are simulated over 2001-2015.
 - In the experiment AGCM simulation, the climatological seasonal cycles of net land carbon production from the control simulation are prescribed in the same replay mode.
 - Difference is the contribution of the variability associated with land carbon fluxes.

Another on-going work is to co-investigate the NASA Interdisciplinary science project “Integrating remote sensing observations with NASA’s GEOS-5 modeling framework in support of retrospective analyses and seasonal prediction” led by Lesley Ott (collaboration among GMAO, UMD and UCI).
Extra slides
Dynamic hydrological zones
Areas (AR1, AR2 and AR3) change with time, so as the soil moisture states (W1, W2, and W3)

Static carbon zones
Areas (10%, 45%, and 45%) are fixed

Each zone allows up to 4 PFTs that compute photosynthesis physics and update carbon states.

Getation zones. Weighted averages of vegetation zone quantities (e.g., canopy conductance) are similarly passed back to the hydrological zones.

Koster et al. (2014), J Clim
Evaluation of carbon fluxes
(Catchment-CN model driven by MERRA-2)

GPP
2002-2011 mean

NBP
2004-2014 mean

Figure 2. Spatial patterns of 2002–2011 mean GPP (g C m⁻² day⁻¹) from (a) Catchment-CN GPP and (b) MTE-GPP as well as (c) zonal mean GPP and (d) the annual cycle of GPP (solid blue: Catchment-CN model; dotted black: MTE-GPP).

Figure 3. Monthly mean of terrestrial NBP of the Catchment-CN model (blue), of the CASA GEDD3 model (red) and of three atmospheric inversions (dotted lines), for the period of 2004–2014. Positive (negative) NBP values indicate that land is a carbon sink (source).