Performance of Variable Coded Modulations over a Nonlinear Channel for VCM Protocol Red Book

Wai Fong, Ph.D. (Code 567, NASA/GSFC)
Wing Lee (Code 567, NASA/GSFC)
• Goal
 – Evaluate the performance of the Recommended Standard’s codes and modulations specified in the “Variable Coded Modulation Protocol” Red Book (CCSDS 431.1-R-0.1), over a nonlinear channel.

• Objectives:
 – Perform simulations that identifies the operating Eb/No required to achieve a CWER of 1e-4 over a nonlinear channel for a subset of the following MODCOD combinations:
 • Channel Codes:
 – AR4JA (Rate 1/2, 2/3, 4/5) LDPC codes (K=16384), C2 LDPC codes
 • Modulations:
 – BPSK, QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK
 – Compare against performance over an ideal AWGN channel with simulation results presented in input paper, SLS-CS_18-09.
End-to-End Simulation

Transmit

Binary Data Source

Encoder

Digital Modulator

Pulse Shaper

Power Amplifier

Phase Noise

Channel Model

Ka-Band TWTA:
- Memoryless Lookup Table (AM/AM, AM/PM)

SRRC:
- Roll-off: 0.35
- Length: 16 sym

AWGN

Matched Filter

Soft Decision Baseband Demodulator

Decoder

Receive

Carrier Phase Recovery:
- Decision-Directed Costas Loop
- 2nd Order
- Norm. Loop BW: 1e-5

Symbol Timing Recovery:
- Gardner’s Algorithm
- 2nd Order
- Norm. Loop BW: 1e-5

LLR Calculation:
- Floating Point

MATLAB Built-in LDPC Decoder:
- 200 Iterations

LDPC Codes:
- AR4JA Rate 1/2
- AR4JA Rate 2/3
- AR4JA Rate 4/5
- C2 Rate 7/8

Mod Symbol Rate:
- 100Mmps

Modulations:
- BPSK
- QPSK
- 8-PSK
- 16-APSK
- 32-APSK
- 64-APSK

SRRC:
- Roll-off: 0.35
- Length: 16 sym

SRRC:
- Roll-off: 0.35
- Length: 16 sym

MATLAB Built-in LDPC Decoder:
- 200 Iterations

Transmit

Receive

4 Samples/Symbol

4 Samples/Symbol

4 Samples/Symbol

4 Samples/Symbol

Transmit

Receive

4 Samples/Symbol
Signal Constellations

BPSK

QPSK, Gray Mapping

8-PSK, Gray Mapping

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Code Rate</th>
<th>Constellation Ratio Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-APSK</td>
<td>1/2</td>
<td>$r_2/r_1 = 3.15$</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>$r_2/r_1 = 3.15$</td>
</tr>
<tr>
<td></td>
<td>4/5</td>
<td>$r_2/r_1 = 2.75$</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>$r_2/r_1 = 2.63$</td>
</tr>
<tr>
<td>32-APSK</td>
<td>1/2</td>
<td>$r_2/r_1 = 4.00$, $r_3/r_1 = 8.00$</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>$r_2/r_1 = 3.15$, $r_3/r_1 = 6.25$</td>
</tr>
<tr>
<td></td>
<td>4/5</td>
<td>$r_2/r_1 = 2.72$, $r_3/r_1 = 4.87$</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>$r_2/r_1 = 2.57$, $r_3/r_1 = 4.41$</td>
</tr>
<tr>
<td>64-APSK</td>
<td>1/2</td>
<td>$r_2/r_1 = 2.73$, $r_3/r_1 = 6.31$</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>$r_2/r_1 = 2.73$, $r_3/r_1 = 6.31$</td>
</tr>
<tr>
<td></td>
<td>4/5</td>
<td>$r_2/r_1 = 2.73$, $r_3/r_1 = 6.31$</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>$r_2/r_1 = 2.73$, $r_3/r_1 = 6.31$</td>
</tr>
</tbody>
</table>

To be presented by Wai Fong at CCSDS Fall 2018 Technical Meeting in Berlin, Germany from 10/15/2018 to 10/19/2018
Details of Channel Model

- **Power Amplifier**
 - TWTA model from SCCC Green Book CCSDS 130.11-G-0 is used.
 - AM/AM and AM/PM nonlinear distortions are modeled and applied as memoryless lookup tables.

- **Phase Noise**
 - Phase noise profile from input paper SLS-RFM_09-09 “ESA advanced coding and modulation performance under realistic channel conditions” is used.
Analysis Approach

- Adopted analysis approach applied in the SCCC Green Book CCSDS 130.11-G-0 using figure-of-merit (FOM) known as “Total Degradation” (TD).

\[TD = \left(\frac{E_b}{N_0} \right)_{NL} - \left(\frac{E_b}{N_0} \right)_{AWGN} + OBO \ (dB) \]

- Amplifier output back-off that represents measured reduction in available power in the link.
- "Demodulation Loss" – Ratio between power needed at receiver to achieve CWER of 1e-4 over the non-linear channel and the linear AWGN channel.

\[\frac{E_b}{N_0} \] required on a nonlinear channel to achieve CWER of 1e-4

\[\frac{E_b}{N_0} \] required on ideal AWGN channel to achieve CWER of 1e-4

To be presented by Wai Fong at CCSDS Fall 2018 Technical Meeting in Berlin, Germany from 10/15/2018 to 10/19/2018
Analysis Approach (Cont.)

• For each VCM mode:
 1. Perform IBO/OBO optimization by means of total degradation (TD).
 2. Report Eb/No required to achieve a CWER of 1e-4 over the specified nonlinear channel.
 3. Apply distortion mitigation to decrease TD and repeat steps 1-2.

• Mitigation techniques considered:
 1. Centroidal pre-distortion (Refer to “DVB-S2 modem algorithms design and performance over typical satellite channels” by Casini)
 2. Ideal sample-by-sample phase post-distortion de-rotation *
 3. Receiver mean phase de-rotation *

* We are currently analyzing these mitigation techniques, results are pending.
TD Optimization without Distortion Mitigation - Preliminary Simulation Results

VCM 9: QPSK, Rate 2/3 AR4JA LDPC
VCM 14: 8PSK, Rate 4/5 AR4JA LDPC
VCM 23: 32APSK, Rate 7/8 C2 LDPC

To be presented by Wai Fong at CCSDS Fall 2018 Technical Meeting in Berlin, Germany from 10/15/2018 to 10/19/2018
Optimum TD Simulation Results without Distortion Mitigation

<table>
<thead>
<tr>
<th>VCM Mode</th>
<th>Code</th>
<th>K</th>
<th>N</th>
<th>Modulation</th>
<th>Ideal Required (Eb/No)_{AWGN} [dB] @ CWER=1e-4</th>
<th>Required (Eb/No)_{AWGN} [dB] @ CWER=1e-4</th>
<th>IBO [dB]</th>
<th>OBO [dB]</th>
<th>TD [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>AR4JA (16K,1/2)</td>
<td>16384</td>
<td>32768</td>
<td>BPSK</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AR4JA (16K,2/3)</td>
<td>16384</td>
<td>24576</td>
<td>BPSK</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AR4JA (16K,4/5)</td>
<td>16384</td>
<td>20480</td>
<td>BPSK</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C2</td>
<td>7136</td>
<td>8160</td>
<td>BPSK</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>AR4JA (16K,1/2)</td>
<td>16384</td>
<td>32768</td>
<td>QPSK</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>AR4JA (16K,2/3)</td>
<td>16384</td>
<td>24576</td>
<td>QPSK</td>
<td>1.75</td>
<td>2.04</td>
<td>0</td>
<td>0.35</td>
<td>0.64</td>
</tr>
<tr>
<td>10</td>
<td>AR4JA (16K,4/5)</td>
<td>16384</td>
<td>20480</td>
<td>QPSK</td>
<td>2.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C2</td>
<td>7136</td>
<td>8160</td>
<td>QPSK</td>
<td>3.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AR4JA (16K,1/2)</td>
<td>16384</td>
<td>32768</td>
<td>8-PSK</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AR4JA (16K,2/3)</td>
<td>16384</td>
<td>24576</td>
<td>8-PSK</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>AR4JA (16K,4/5)</td>
<td>16384</td>
<td>20480</td>
<td>8-PSK</td>
<td>5.14</td>
<td>5.81</td>
<td>0</td>
<td>0.31</td>
<td>0.98</td>
</tr>
<tr>
<td>15</td>
<td>C2</td>
<td>7136</td>
<td>8160</td>
<td>8-PSK</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>AR4JA (16K,1/2)</td>
<td>16384</td>
<td>32768</td>
<td>16-APSK</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>AR4JA (16K,2/3)</td>
<td>16384</td>
<td>24576</td>
<td>16-APSK</td>
<td>4.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>AR4JA (16K,4/5)</td>
<td>16384</td>
<td>20480</td>
<td>16-APSK</td>
<td>6.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>C2</td>
<td>7136</td>
<td>8160</td>
<td>16-APSK</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>AR4JA (16K,1/2)</td>
<td>16384</td>
<td>32768</td>
<td>32-APSK</td>
<td>4.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>AR4JA (16K,2/3)</td>
<td>16384</td>
<td>24576</td>
<td>32-APSK</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>AR4JA (16K,4/5)</td>
<td>16384</td>
<td>20480</td>
<td>32-APSK</td>
<td>7.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>C2</td>
<td>7136</td>
<td>8160</td>
<td>32-APSK</td>
<td>9.32</td>
<td>12.1</td>
<td>10</td>
<td>4.23</td>
<td>7.01</td>
</tr>
<tr>
<td>24</td>
<td>AR4JA (16K,1/2)</td>
<td>16384</td>
<td>32768</td>
<td>64-APSK</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>AR4JA (16K,2/3)</td>
<td>16384</td>
<td>24576</td>
<td>64-APSK</td>
<td>8.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>AR4JA (16K,4/5)</td>
<td>16384</td>
<td>20480</td>
<td>64-APSK</td>
<td>9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>C2</td>
<td>7136</td>
<td>8160</td>
<td>64-APSK</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To be presented by Wai Fong at CCSDS Fall 2018 Technical Meeting in Berlin, Germany from 10/15/2018 to 10/19/2018

With Phase Noise
- 1 Frame Error
- 5 Frame Errors

No Phase Noise
- 30 Frame Errors
Summary

• We have verified that the LDPC VCM modes operate with non-linear distortions.
• The TD FOM is a useful measure to study the total end-to-end losses for non-linear channels but may not be relevant to an actual system.
• We are researching other methods of mitigation and will report when studies are completed.
Acronym List

• VCM – Variable Coded Modulation
• LDPC – Low Density Parity Check
• CWER – Codeword Error Rate
• IBO – Input Back-off
• OBO – Output Back-off
• TD – Total Degradation
• AWGN – Additive White Gaussian Noise
• SCCC – Serially Concatenated Convolutional Code
• TWTA – Traveling Wave Tube Amplifier
• Eb/No – Bit-Energy-to-Noise-Power-Density Ratio
• SRRC – Square Root Raised Cosine
• FOM – Figure of Merit