Starling1
Mission Technologies Overview

Howard Cannon
NASA Ames Research Center

Small Satellite Conference
August 8, 2018
Starling1

- Mission to fly 3 to 4 cubesats in LEO to test swarm* related technologies in space.
- Partnership between Air Force Research Lab (AFRL), NASA Ames Research Center
 - Shiver - AFRL mission to investigate formation flying and autonomous station keeping
 - Spacecraft vendor: Adcole Maryland Aerospace (AMA)
- Sponsor: NASA Space Technology Mission Directorate
 - Small Spacecraft Technology Program (SSTP)
 - Game Changing Technology (GCD)
- Currently in Phase A – scheduled to launch in early 2021

Characteristics of a spacecraft swarm

- Multiple distributed spacecraft
- Reconfigurable formations / functionality
- Act in unison to achieve objectives with minimal commanding / oversight

Technologies also applicable to general category of distributed assets
Starling-Explorers provide coordinated flight and communication with sensors such as ground penetrating radar or magnetometers.

Communication with Earth

Starling-Explorers Formation Flying and Inter-Communicating Remote Sensors

10/31/2018
Starling-DSG Sensors provide visual inspection and monitoring for Deep Space Gateway operations.

Starling-DSG Sensors Mobile Network with Autonomous Navigation
Starling-LunarNet provides constant monitoring of lunar surface activity by providing an ad-hoc mesh network in low lunar orbit.
Starling-SolarWind in L1 halo orbit autonomously performs radio tomography and in-situ measurements to monitor and characterize solar wind.

The core technologies enabling swarms are a mixture of mature in-space, mature on-the-ground, and new to-be-developed:

Knowledge – How do we know the relative positions and movements of the spacecraft in the swarm?

Communications – How do we get information to, from, and among the spacecraft in the swarm?

Control – How do we maintain the configuration of spacecraft in the swarm?

Operations – How do we command the swarm configuration and return data from it?

Access – How do we get the swarm into space and deploy it?

We know how to do all of these with constellations of larger spacecraft using traditional operations, but not how to do it cost-effectively for large swarms of small spacecraft.
Starling1 is a cubesat mission that will nominally deploy four spacecraft in order to demonstrate the following swarm related Technologies:

- **Communication protocols:**
 - Are scalable to 100s of spacecraft
 - Resistant to multiple lost nodes
 - Can autonomously map the network topology

- **Relative navigation:**
 - Uses simple suite of sensors
 - Uses standard spacecraft components (e.g., star trackers), thus no additional size nor weight is added.
 - Does not rely on earth-centric resources (e.g., GPS)
 - Can work with non-cooperative targets

- **Autonomy software:**
 - Automatically reconfigure in response to sensor feedback
• **B.A.T.M.A.N.**
 – “Better Approach to Mobile Ad hoc Networking”
 – Mobile Ad-hoc Networks (MANET) protocol
 – Self-configuring
 – Built for dynamic topologies
 – Decentralized network control

• **CCSDS File Delivery Protocol**

• **Challenges**
 – MANET protocols have no flight heritage
 • No test or simulation data for expected orbital dynamics and cyclical motions
 • Unclear impact of SBUs or thermal noise will impact performance
 – Differences in spacecraft hardware (radios, processors)
 • Spaceflight radios do not use the IP stack that MANET’s are typically built around
 – Imperfect antenna coverage with nulls
Network Experiment

- **Ad Hoc Network experiments:**
 - Broadcast Test
 - Point to Point Test
 - Routing Test
 - File transfer characterization using CFDP
 - RF Stress Tests (bandwidth, distance)
 - File synchronization

- **Stretch Experiment Goals**
 - Ground comm query one S/C through another
 - Ground command to entire swarm through a single S/C
Relative Navigation Tech Demo

• Starling Formation-flying Optical eXperiment (StarFOX) – Stanford University partnership
 – Passive sensors
 – No cooperation required
 – COTS hardware
 – Minimal hardware
 – Wide FOV

• Verification by GPS (~1-10 m)

• Challenges
 – New methods for finding and tracking multiple targets need to be developed
 – Algorithm requires sharing of maneuver information between spacecraft
<table>
<thead>
<tr>
<th>Exp.</th>
<th>Formation Geometry</th>
<th>Observer Count</th>
<th>Target Count</th>
<th>Maneuver Inclusion</th>
<th>Other Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>In-train</td>
<td>Single</td>
<td>Single</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B*</td>
<td>In-train</td>
<td>Single</td>
<td>Multi.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>In-train</td>
<td>Multi.</td>
<td>Single</td>
<td>-</td>
<td>Inter-Satellite Link</td>
</tr>
<tr>
<td>D*</td>
<td>In-train</td>
<td>Multi.</td>
<td>Multi.</td>
<td>-</td>
<td>Inter-Satellite Link</td>
</tr>
<tr>
<td>E</td>
<td>In-train to Projected Circular Orbit</td>
<td>Single</td>
<td>Single</td>
<td>Maneuver for acquiring PCO separation</td>
<td>Maneuver Plan</td>
</tr>
<tr>
<td>F**</td>
<td>Projected Circular Orbit</td>
<td>Single</td>
<td>Single</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G**</td>
<td>Projected Circular Orbit</td>
<td>Single</td>
<td>Multi.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>Projected Circular Orbit</td>
<td>Multi.</td>
<td>Single</td>
<td>-</td>
<td>Inter-Satellite Link</td>
</tr>
<tr>
<td>I**</td>
<td>Projected Circular Orbit</td>
<td>Multi.</td>
<td>Multi.</td>
<td>-</td>
<td>Inter-Satellite Link</td>
</tr>
<tr>
<td>J</td>
<td>Projected Circular Orbit</td>
<td>Single</td>
<td>Single</td>
<td>Maneuver for acquiring PCO separation</td>
<td>Maneuver Plan</td>
</tr>
</tbody>
</table>

(*) or (**) can be conducted simultaneously, as illustrated below.
Opportunity

- Autonomy is the least mature technology required for multi-spacecraft missions
- Autonomy can significantly increase the effectiveness of multi-spacecraft missions by operating them as a collective rather than individually

Goals

- Demonstrate flight-relevant autonomy technology in a scalable multi-spacecraft mission
- Develop and extensible autonomy architecture for collective operation of a swarm including high-level commanding, dynamic reconfiguration, and handling uncertainty across a distributed system.
- Establish scalability as a core design option for space missions
Autonomously reconfigure the spacecraft attitude and channel selection/sampling to improve signal strength and resolution of feature image

- Experiment approach still in progress
Starling1 is a new multi-spacecraft mission to investigate swarm technologies:
- Adhoc Network Communications
- Relative Navigation
- Autonomous Reconfiguration

Combined with the Shiver formation experiments, expect that spacecraft swarm technologies will be at high TRL in next few years.
BACKUP
NEED
• A capability to coordinate an entire spacecraft swarm with minimal resources

GOALS
• Enable Operational Success by providing a platform that supports swarm technology development
• Conduct Orbital Tests to develop technology that enables large scale, destination agnostic swarms

OBJECTIVES
• Per the Starling One Phase A Decision Memorandum, L1 requirements and Objectives are synonymous and are defined in two types:
 – Operational Success = Needed to develop a platform that supports scalable swarm development
 – Orbital Test = Tech development that enables scalable swarms
• (See Level 1 Requirements for details)
<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Requirement</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Success Objectives</td>
<td>OBJ-001 Peer-to-Peer Comms</td>
<td>Starling1 shall conduct in-space peer-to-peer communications.</td>
<td>Peer-to-peer RF communication is already flight proven and is required in order to develop additional scalable swarm technology.</td>
</tr>
<tr>
<td></td>
<td>OBJ-002 Absolute Position Knowledge</td>
<td>Starling1 shall collect absolute position knowledge for each spacecraft.</td>
<td>Absolute position knowledge is needed to verify position data for relative navigation (RelNav) testing and for measuring range performance of peer-to-peer communication.</td>
</tr>
<tr>
<td></td>
<td>OBJ-003 Mission Duration</td>
<td>Starling1 shall fly at least three spacecraft in LEO for three months.</td>
<td>Three spacecraft are needed to prove in-space, multi hop communication. Three months allows time for commissioning and technology demonstration but should not drive component reliability and cost.</td>
</tr>
<tr>
<td></td>
<td>OBJ-004 Swarm Spatial Maintenance</td>
<td>Starling1 shall conduct swarm position maintenance.</td>
<td>The ability to vary peer-to-peer range will help with assessing performance of tests and will prolong the duration of in-range operations.</td>
</tr>
</tbody>
</table>
L1 Requirements

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Requirement</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital Test Objectives</td>
<td>OBJ-005 Relative Position Knowledge (RPK)</td>
<td>Starling1 shall conduct inter-spacecraft relative position knowledge testing.</td>
<td>RPK is needed for determining comm performance. If relative position can be obtained without GPS or TLEs, the technology could help implement deep-space swarm missions.</td>
</tr>
<tr>
<td></td>
<td>OBJ-006 Peer-to-Peer Comm Performance</td>
<td>Starling1 shall conduct network performance testing over an in-space communications network.</td>
<td>Peer-to-peer communication technology must evolve to enable scalability to large swarms (>100 spacecraft). In general, in-space testing of comm network technologies is required to raise TRL.</td>
</tr>
<tr>
<td></td>
<td>OBJ-007 Autonomous Reconfiguration</td>
<td>Starling1 shall conduct autonomous swarm reconfiguration testing</td>
<td>In order for swarms to be cost effective, they will need to achieve their objectives operate with minimal operational oversight.</td>
</tr>
</tbody>
</table>
• Spacecraft will deploy into In-train formation
 – Spacecraft deployed such that along-orbit drift is minimized
 – A series of maneuvers arrest the drift rate between spacecraft to establish along-track separation

• Then move into Projected Circular Orbits (PCOs)
 – Spacecraft will maneuver into stable relative orbits with varying cross-track and radial amplitudes