DSMC Simulations of Mars Science Laboratory Entry from Rarefied to Continuum Conditions

31st International Symposium on Rarefied Gas Dynamics
Glasgow, UK, July 26th, 2018

Arnaud Borner1
Jeremie B. E. Meurisse1
Nagi N. Mansour2

1 Science & Technology Corporation at NASA Ames Research Center, Moffett Field, CA 94035, USA
2 NASA Ames Research Center, Moffett Field, CA 94035, USA
Mars Science Laboratory Mission

<table>
<thead>
<tr>
<th>Mission Type</th>
<th>Mars Rover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>NASA</td>
</tr>
<tr>
<td>Launch Date</td>
<td>11/26/11</td>
</tr>
<tr>
<td>Launch Mass</td>
<td>3839 kg</td>
</tr>
<tr>
<td>Rocket</td>
<td>Atlas V</td>
</tr>
<tr>
<td>Launch Date</td>
<td>08/06/12</td>
</tr>
<tr>
<td>Launch Site</td>
<td>Gale Crater</td>
</tr>
</tbody>
</table>

credit: NASA JPL
Overview – Coupling aerothermal environment and material response

MSL PICA heatshield

Aeroshell Geometry[1]

Image processing and material meshing POINTWISE

Material mesh

Spatial and temporal interpolations

Material response PATO [4]

Recession, temperature and internal velocity

Environment meshing POINTWISE

Aerothermal environment around aeroshell

Boundary layer edges BLAYER

Aerothermal environment at the surface

LEGEND

Overview – Coupling aerothermal environment and material response

From literature

Material meshing POINTWISE

Soft coupling OPENFOAM

BOUNDARY LAYER

AEROTHERMAL ENVIRONMENT

ENVIRONMENT MESH

MATERIAL RESPONSE
Aerothermal environment computed from DPLR

DPLR assumptions

- **Laminar** boundary layer
- **Non-blowing** & smooth wall
- Chemical and thermal non-equilibrium
- 2 temperatures model
- Radiative equilibrium wall with $\varepsilon = 0.85$
- Super-catalytic wall: recombination to freestream mole fraction
- Mars atmosphere: $y_{CO2} = 0.97$, $y_{N2} = 0.03$
- 8 species and 24 reactions (12 forward + 12 backward): Mitcheltree model [5]
- Park hypersonics correction to vibrational relaxation [6]
- Used from 48.4s to 100.5s of entry

BLAYER calculates the **boundary layer edges** using a curvature-based method

Surface pressure p_w, heat transfer coefficient C_H and enthalpy h_e at the **boundary layer edges** are used as inputs in the material response code: PATO

credit: C. Tang, NASA Ames
Aerothermal environment computed from SPARTA

SPARTA assumptions

- 3 temperatures model
- Radiative equilibrium wall with $\varepsilon = 0.85$
- Super-catalytic wall: recombination to freestream mole fraction
- Mars atmosphere: $y_{\text{CO}_2} = 0.97$, $y_{\text{N}_2} = 0.03$
- 8 species and 24 reactions(12 forward + 12 backward): Mitchelltree model [5]
- VSS model with high temperature transport calibration [6]
- Parker equation for rotational relaxation and Millikan-White equation + Park correction for vibrational relaxation [7]
- Discrete vibrational temperature
- Used from 0s to 48.4s of entry

Boundary layer edges calculated using an edge-based method

Surface pressure p_w, heat transfer coefficient C_H and enthalpy h_e at the boundary layer edges are used as inputs in the material response code: PATO
High temperature transport model

<table>
<thead>
<tr>
<th></th>
<th>d (Å)</th>
<th>ω</th>
<th>α</th>
<th>Z_{rot}^∞</th>
<th>$T^* (K)$</th>
<th>$C_1 (K)$</th>
<th>$C_2 (K^{0.33})$</th>
<th>$\sigma_v^{\text{Park}} (\text{Å}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2$</td>
<td>3.896</td>
<td>0.7</td>
<td>1.463</td>
<td>14.4</td>
<td>90</td>
<td>100.7</td>
<td>138</td>
<td>0.3</td>
</tr>
<tr>
<td>N$_2$</td>
<td>4.04</td>
<td>0.686</td>
<td>1.424</td>
<td>15.7</td>
<td>80</td>
<td>19.87</td>
<td>221</td>
<td>0.3</td>
</tr>
<tr>
<td>O</td>
<td>3.692</td>
<td>0.803</td>
<td>1.582</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3.697</td>
<td>0.79</td>
<td>1.486</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>4.218</td>
<td>0.737</td>
<td>1.542</td>
<td>5</td>
<td>117</td>
<td>49.5</td>
<td>1029</td>
<td>0.3</td>
</tr>
<tr>
<td>CO</td>
<td>4.684</td>
<td>0.787</td>
<td>1.494</td>
<td>11.4</td>
<td>92</td>
<td>18.36</td>
<td>198</td>
<td>0.03</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>4.147</td>
<td>0.632</td>
<td>1.259</td>
<td>15</td>
<td>195</td>
<td>51004</td>
<td>36.5</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>4.983</td>
<td>0.883</td>
<td>1.523</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VSS: $T_{\text{ref}} = 273$ K

<table>
<thead>
<tr>
<th></th>
<th>Parker</th>
<th>Millikan White</th>
<th>Park [7]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$C_1 (K)$</td>
<td>$C_2 (K^{0.33})$</td>
<td>$\sigma_v^{\text{Park}} (\text{Å}^2)$</td>
</tr>
<tr>
<td>O$_2$</td>
<td>100.7</td>
<td>138</td>
<td>0.3</td>
</tr>
<tr>
<td>N$_2$</td>
<td>19.87</td>
<td>221</td>
<td>0.3</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>49.5</td>
<td>1029</td>
<td>0.3</td>
</tr>
<tr>
<td>CO</td>
<td>18.36</td>
<td>198</td>
<td>0.03</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>51004</td>
<td>36.5</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemistry model

Reaction parameters for the Micheltree and Gnoffo reaction model [5]

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>A (cm3/mol/s)</th>
<th>B</th>
<th>C (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO + M ↔ C + O + M (M = atom)</td>
<td>3.4×1020</td>
<td>-1.00</td>
<td>129,000</td>
</tr>
<tr>
<td>2</td>
<td>CO + M ↔ C + O + M (M = mol.)</td>
<td>2.3×1020</td>
<td>-1.00</td>
<td>129,000</td>
</tr>
<tr>
<td>3</td>
<td>CO$_2$ + M ↔ CO + O + M (M = atom)</td>
<td>1.4×1022</td>
<td>-1.50</td>
<td>63,275</td>
</tr>
<tr>
<td>4</td>
<td>CO$_2$ + M ↔ CO + O + M (M = mol.)</td>
<td>6.9×1021</td>
<td>-1.50</td>
<td>63,275</td>
</tr>
<tr>
<td>5</td>
<td>O$_2$ + M ↔ O + O + M (M = atom)</td>
<td>1.0×1022</td>
<td>-1.50</td>
<td>59,750</td>
</tr>
<tr>
<td>6</td>
<td>O$_2$ + M ↔ O + O + M (M = mol.)</td>
<td>2.0×1021</td>
<td>-1.50</td>
<td>59,750</td>
</tr>
<tr>
<td>7</td>
<td>N$_2$ + M ↔ N + N + M (M = atom)</td>
<td>3.0×1022</td>
<td>-1.60</td>
<td>113,200</td>
</tr>
<tr>
<td>8</td>
<td>N$_2$ + M ↔ N + N + M (M = mol.)</td>
<td>7.0×1021</td>
<td>-1.60</td>
<td>113,200</td>
</tr>
<tr>
<td>9</td>
<td>NO + M ↔ N + O + M (M = C, N, O, NO, CO$_2$)</td>
<td>1.1×1017</td>
<td>0.00</td>
<td>75,500</td>
</tr>
<tr>
<td>10</td>
<td>NO + M ↔ N + O + M (M = N$_2$, O$_2$, CO)</td>
<td>5.0×1015</td>
<td>0.00</td>
<td>75,500</td>
</tr>
<tr>
<td>11</td>
<td>NO + O ↔ O$_2$ + N</td>
<td>8.4×1012</td>
<td>0.00</td>
<td>19,450</td>
</tr>
<tr>
<td>12</td>
<td>N$_2$ + O ↔ NO + N</td>
<td>6.4×1017</td>
<td>-1.00</td>
<td>38,370</td>
</tr>
<tr>
<td>13</td>
<td>CO + O ↔ O$_2$ + C</td>
<td>3.9×1013</td>
<td>-0.18</td>
<td>69,200</td>
</tr>
<tr>
<td>14</td>
<td>CO$_2$ + O ↔ O$_2$ + CO</td>
<td>2.1×1013</td>
<td>0.00</td>
<td>27,800</td>
</tr>
<tr>
<td>15</td>
<td>CO + N ↔ NO + C</td>
<td>2.86×1011</td>
<td>0.50</td>
<td>53,630</td>
</tr>
<tr>
<td>16</td>
<td>CO + CO ↔ CO$_2$ + C</td>
<td>2.33×109</td>
<td>0.50</td>
<td>65,710</td>
</tr>
<tr>
<td>17</td>
<td>NO + CO ↔ CO$_2$ + N</td>
<td>4.59×108</td>
<td>0.50</td>
<td>12,070</td>
</tr>
</tbody>
</table>

- Backward rates computed using forward rates and equilibrium constants.
- Equilibrium constants computed using van’t Hoff equation (Gibbs free energy).
- Backward rates fit to modified Arrhenius form between 5,000 and 20,000 K.
Radiative equilibrium boundary condition

\[q_w = \varepsilon \sigma T_w^4 \]
Translational temperature at different altitudes
Number density at different altitudes
Surface temperature and pressure from DSMC at 40s.
The 48.4s of entry point: DSMC vs CFD
Continuum breakdown parameters: CFD

\[Kn_{GLL} = \frac{\lambda}{Q} \left| \frac{dQ}{dl} \right| \] [8]
Continuum breakdown parameters: DSMC

\[Kn_{GLL} = \frac{\lambda}{Q} \left| \frac{dQ}{dl} \right| \] [8]
The 48.4s of entry point: DSMC mole fractions
Temperature from PATO

![Graph showing temperature over time for different MISPs](image)

- **Temperature from PATO**
- **Surface**
- **DSMC**
- **DPLR**
- **MISP1**
- **MISP2**
- **MISP3**
- **MISP4**
- **MISP5**
- **MISP6**
- **MISP7**

Diagram showing spatial distribution of MISPs

- **MISP1**
- **MISP2**
- **MISP3**
- **MISP4**
- **MISP5**
- **MISP6**
- **MISP7**

Legend
- **MISP1**
- **MISP2,3**
- **MISP4**
- **MISP5**
- **MISP6**
- **MISP7**

Temperature (K)
- 0
- 20
- 40
- 60
- 80
- 100

Time (s)
- 0
- 20
- 40
- 60
- 80
- 100
• Addition of DSMC results significantly modify temperature prediction for first 60s of Entry Interface
Recession from PATO

Recension (mm) vs Time (s)

- DSMC
- DPLR

- MISP1
- MISP2,3
- MISP4
- MISP5
- MISP6
- MISP7

DSMC+DPLR (solid)
DPLR (dotted)
Conclusion

Hypersonic environment (DPLR)
- Laminar
- Super-catalytic wall
- Non-blowing
 (SPARTA)
- High T transport calibration
- Parker +Millikan White + Park for relaxation
- Discrete vibrational levels
 (common)
- Super-catalytic wall with radiative equilibrium
- Mitcheltree 8 species reaction model

DSMC simulations from 20 to 48.4s
- Shock narrows with decreasing altitude
- Compute surface pressure and heat flux

Shock standoff offset at 48.4s
- Continuum breakdown?
- Differences between models?
Conclusion

Hypersonic environment (DPLR)
- Laminar
- Super-catalytic wall
- Non-blowing
 (SPARTA)
- High T transport calibration
- Parker + Millikan White + Park for relaxation
- Discrete vibrational levels
 (common)
- Super-catalytic wall with radiative equilibrium
- Mitcheltree 8 species reaction model

Soft coupling

Porous material response (PATO)
- Pyrolysis
- CMA-type BL approx.
- No finite-rate
- Equilibrium

Outputs
- Temperature
- Recession
References

Questions?

31st International Symposium on Rarefied Gas Dynamics
Glasgow, UK, July 23rd - 27th, 2018

Contact
Arnaud Borner
(650) 604 5986
Arnaud.p.borner@nasa.gov