Performance Evaluation of Conflict-Free Trajectory Taxiing in Airport Ramp Area Using Fast-Time Simulations

Nikolai Okuniek (DLR)
Yoon Jung (NASA)
Ingrid Gerdes (DLR)
Zhifan Zhu (NASA/SGT)
Sergei Gridnev (NASA/SGT)
Hanbong Lee (NASA)

37th Digital Avionics Systems Conference
September 23-27, 2018
London, UK
Outline

- Background
- Research Objective and Technical Approach
- Simulation Setup
- Results and Analysis
- Summary and Future Research
Background - DLR & NASA Collaboration

Collaborate in the area of airport surface operations to jointly investigate advanced ATM concepts/tools:

- Started in 2013
- Investigate a harmonized concept of operations for surface operations
- Conduct simulations: independent and integrated

Research Objective and Technical Approach

- **Objective:** Investigate conflict-free, time-based taxi optimization capability applied to *ramp operations* using integrated fast-time simulations

- **Technical Approach**
 - Adapt the existing conflict-free surface traffic optimization tool to ramp operations
 - Integrate with a fast-time simulation tool
 - Develop common performance metrics in efficiency, throughput, predictability, and environmental benefits
 - Compare the simulation results with the baseline simulation
Contributing Technology - Taxi Routing for Aircraft: Creation and Controlling (TRACC)

- Coupled with a Departure Management System (DMAN) determines the optimal surface movement plans
- Generates conflict-free 4D taxi (4DT) trajectories and calculates Target Start-up Approval Time (TSAT)
- Transfers 4DT trajectories into a speed profile with corresponding advisories for controllers and pilots
- Tested the prototype tool in a human-in-the-loop simulation environment

TRACC User Interface for Tower Controller (Hamburg Airport, Germany)
TRACC_PB: TRACC for Pushback Optimization

• Solve for optimized conflict-free taxi trajectories in the ramp area
• Inputs:
 - Prescribed taxi routes
 - Scheduled departure times and target movement area entry times for departures
 - Target ramp entry times for arrivals
• Outputs:
 - Optimized taxi speed profile that satisfies target times for departures and arrivals
 - Target pushback times for departures
• Target movement area entry time and target ramp entry time are adjusted if there is no conflict-free trajectory available
TRACC_PB for Ramp Operations
Contributing Technology - Surface Operations Simulator and Scheduler (SOSS)

- Fast-time airport surface simulation tool based on a node-link model
- Capable of modeling uncertainties, including taxi speeds, pushback process
- Common Algorithmic Interface (CAI) allows for testing schedulers independent of the model
- Has a built-in Conflict Detection and Resolution (CD&R) function to prevent loss of separation
- Used for development/testing of schedulers that can be plugged in a real-time system
Simulation Setup – Baseline System

- SOSS CD&R function is used to maintain separation of traffic on the surface
- Target movement area entry and target ramp entry times are saved for TRACC_PB simulation
Simulation Setup - TRACC_PB System

- Scheduled departure time
- Target mov. area entry time
- Target ramp entry time
- Prescribed taxi routes

TRACC_PB Conflict-free Taxi Optimization

Conflict-free taxi?

Yes

Speed profiles & Target pushback times

SOSS engine executes 4D ramp trajectory*

No

TRACC_PB adjusts target movement area entry and/or target ramp entry times

Outputs - Ramp trajectories

Performance Metrics

*SOSS CD&R function is disabled
Traffic Scenario

Airport
- Charlotte Douglas International Airport (CLT)
- Four runways in a south flow configuration
 - RWY 18L (departure only)
 - RWY 18R, 23 (arrival only)
 - RWY 18C (dual usage)
- Arrival spots: 11, 12, 13, 22
- Departure spots: 8, 9, 26, 27, 29

Traffic Scenario
- 138 flights (medium traffic density)
 - 62 departures, 76 arrivals
- Scenario duration: about 2.5 hours
Performance Metrics

- Ramp throughput
- Ramp Taxi time
- Gate Hold Time
- Ramp Departure Flight Count
- TMAT* Compliance
- Environmental Benefits

*TMAT = Target movement area entry time
Results and Analysis – Ramp Throughput

Baseline system is focused on meeting target throughput while TRACC_PB is focused on achieving conflict-free taxi
Results and Analysis – Ramp Taxi & Gate Hold Times

- **TRACC_PB** reduces ramp taxi time through optimized speed profile enabling conflict-free taxi.
- **TRACC_PB** holds aircraft longer at the gate than the Baseline.
Results and Analysis – TMAT Compliance
(Actual mov. area entry time – Target mov. area entry time)

Magnitude of compliance:
- TMAT compliance at various percentiles

<table>
<thead>
<tr>
<th>Percentile</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>80th</th>
<th>90th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Sec)</td>
<td>17</td>
<td>25</td>
<td>41</td>
<td>43</td>
<td>87</td>
</tr>
<tr>
<td>TRACC_PB (Sec)</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>44</td>
<td>279</td>
</tr>
</tbody>
</table>

TRACC_PB’s TMAT compliance outperforms the Baseline in ~80% of situations

AMAT = Actual Movement Area entry Time
Results and Analysis – TMAT Compliance
(Actual mov. area entry time – Target mov. area entry time)

![Graph showing TMAT Compliance]

<table>
<thead>
<tr>
<th>Percentile (Sec)</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>80th</th>
<th>90th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>17</td>
<td>25</td>
<td>41</td>
<td>43</td>
<td>87</td>
</tr>
<tr>
<td>TRACC_PB</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>44</td>
<td>279</td>
</tr>
</tbody>
</table>

Outliers of TRACC_PB’s TMAT compliance is related to longer gate hold times (< 1700 secs)
Results and Analysis - Environmental Benefits (Departures)

- Metrics were computed following ICAO standards with the assumption of both engines running.
- TRACC_PB results showed better performance in fuel and emissions than the Baseline.
Results and Analysis - Environmental Benefits (Arrivals)

- Metrics were computed following ICAO standards with the assumption of both engines running.
- TRACC_PB results showed better performance in fuel and emissions than the Baseline.
Summary

• Both Baseline and TRACC_PB systems
 - used gate holding to shift excess taxi time in the ramp to the gate
 - sought to comply with target movement area entry times

• The conflict-free taxi solution by TRACC_PB led to less taxi times, longer gate holding, and less environmental impact than the Baseline system

• TRACC_PB result showed a slight decrease in ramp departure throughput due to larger gate holding

• Both systems showed a good compliance to target movement area entry time
 - Meets current Surface Collaborative Decision Making (CDM) suggestion: ±5 min around target
 - However, TRACC_PB result shows a better compliance than Baseline in 80% of situations
Suggested Future Research

- Investigation of uncertainties in taxi process to provide robust taxi schedules
- Investigation of off-nominal conditions
- Flight deck analysis will be refined to balance the research between ground-based decision support tools and the flight deck automation
Thank you!

Contact
Nikolai Okuniek
Institute of Flight Guidance
German Aerospace Center (DLR)
nikolai.okuniek@dlr.de

Contact
Dr. Yoon C. Jung
Aviation Systems Division
NASA Ames Research Center
yoon.c.jung@nasa.gov
Back up slides
Results and Analysis – Ramp Throughput

Baseline system is focused on meeting target throughput while TRACC_PB is focused on achieving conflict-free taxi
Results and Analysis – Ramp Departure Flight Count

TRACC_PB’s conflict-free trajectories contribute to less ramp congestion, but takes more time to flush out departures.
Results and Analysis - Environmental Benefits

<table>
<thead>
<tr>
<th></th>
<th>Departures</th>
<th></th>
<th>Arrivals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>TRACC_PB</td>
<td>Difference %</td>
<td>Baseline</td>
</tr>
<tr>
<td>Fuel (Kg)</td>
<td>2116.05</td>
<td>1739.68</td>
<td>17.8 ↓</td>
<td>2680.64</td>
</tr>
<tr>
<td>CO₂ (Kg)</td>
<td>6517.43</td>
<td>5358.21</td>
<td>17.8 ↓</td>
<td>8256.36</td>
</tr>
<tr>
<td>HC (Kg)</td>
<td>4.27</td>
<td>3.36</td>
<td>21.3 ↓</td>
<td>6.84</td>
</tr>
<tr>
<td>CO (Kg)</td>
<td>46.28</td>
<td>37.55</td>
<td>18.9 ↓</td>
<td>64.13</td>
</tr>
<tr>
<td>NOₓ (Kg)</td>
<td>9.42</td>
<td>7.76</td>
<td>17.6 ↓</td>
<td>11.88</td>
</tr>
</tbody>
</table>

- Metrics were computed following ICAO standards with the assumption of both engines running.
- TRACC_PB results showed better performance in fuel and emissions than the Baseline.