Impact of Satellite Sea Surface Salinity Observations on ENSO Predictions from the GMAO S2S Forecast System

E. Hackert, R. Kovach, J. Marshak, A. Borovikov, A. Molod, and G. Vernieres
Outline

- Methodology
- Mechanisms of SSS Improvements
- Forecast Impact on Different Phases of ENSO
- Forecast Impact of Aquarius, versus SMAP and Combined
Seasonal Prediction System - GEOS S2S Version 2

Coupled Model (Sub-seasonal to Seasonal Prediction System)
- Same as NASA’s current contribution to North American Multi-Model Ensemble (NMME)
- OGCM: MOM5, ~0.5°, 40 levels
- AGCM: Similar to MERRA-2, ~0.5°, 72 hybrid sigma/pressure levels
- Ice Model: CICE-4.0

Coupling Techniques
- Forecast, ocean observer, and analysis is applied every 5 days using intermittent replay, 18 hour IAU
- Atmosphere is “replayed” to like MERRA-2 – like atmosphere
Seasonal Prediction System - GEOS S2S Version 2

Ocean Data Assimilation System
• LETKF assimilation (similar to Penny et al, 2013)
• ODAS ensemble members - monthly averaged anomalies of 20 years of freely coupled experiment re-centered around the background

Observations
• Strong relaxation of SST and sea ice fraction to observations
• Assimilation of in situ T_z and S_z (including Argo, XBT, CTD, tropical moorings)
• Assimilation of satellite along-track sea level (T/P, Jason, Saral, ERS, GEOSAT, HY-2A, CryoSat-2, Sentinel)
• Note that the current system neither relaxes to nor assimilates observed SSS (but does replay to MERRA2 precipitation)
• S2S has been modified to assimilate Level 2 SSS from Aquarius (V5) and SMAP (V4) (now running as an ensemble of near-real time S2S system)
Satellite SSS Assimilation Data

Aquarius V5

13472 Obs

(Lilly and Lagerloef, 2008)

Observation Error

SMAP V4

70792 Obs

(Fore et al., 2016)

Observation Error

Observation Error

(Lilly and Lagerloef, 2008)

(Fore et al., 2016)
Mechanisms of SSS Improvements

- NO SSS = GMAO production system (S2S-v2.1) with no SSS assimilation
- AQ+SMAP = assimilates all available Aquarius V5 and SMAP V4 SSS

Show AQ+SMAP minus NO SSS to highlight impact of SSS assimilation.
Mechanisms of SSS Improvements

Example of May 2015
Mechanisms of SSS Improvements

Example of May 2015

MLD thickens and BLT shoals
Kelvin Wave Amplitude

AQ+SMAP

NOSSS
Kelvin Wave Amplitude

AQ+SMAP

S2S

AQ+SMAP – NOSSS
Impact of SSS Assimilation on Different Phases of ENSO

Forecasts:

- Apr 2015: Big El Nino
- May 2017: La Nina
- Apr 2018: Weak El Nino?

Use NINO3.4 SST Anomaly (Reynolds et al., 2002) as observations

- No SSS (S2S)
- AQ+SMAP
Big El Nino – Mar, Apr, May, Jun, 2015

S2S (No SSS Assimilation) AQ+SMAP Assimilation

[Graphs showing SST anomalies for different months and years, with lines indicating different assimilation methods.]
Big El Niño – Apr 2015

S2S (No SSS Assimilation) AQ+SMAP Assimilation

SST anomaly [°C] for Niño 3.4 from 2014 to 2016 for different scenarios:
- S2S
- eh011
- AQ+SMAP

The charts show the evolution of SST anomalies for the Niño 3.4 region with different assimilation methods.
La Nina – Mar, Apr, May, Jun 2017

S2S (No SSS Assimilation) AQ+SMAP Assimilation

[Graph showing SST anomalies over time for S2S and AQ+SMAP assimilation]
La Nina – Apr 2017

S2S (No SSS Assimilation)

AQ+SMAP Assimilation

SST anom [°C]

Niño 3.4

Apr 2017

AQ+SMAP S2S

SST anom [°C]

Niño 3.4

Apr 2017
La Nina – May 2017

S2S (No SSS Assimilation)

AQ+SMAP Assimilation

AQ+SMAP S2S
Weak El Nino? – Mar, Apr, May, Jun 2018

S2S (No SSS Assimilation) vs AQ+SMAP Assimilation

[Graph showing SST anomalies over time]
Weak El Nino? – Apr 2018

S2S (No SSS Assimilation)

AQ+SMAP Assimilation

![Graphs showing SST anomalies over time for different regions and years.]
Preliminary Results

- Deeper MLD due to satellite SSS assimilation acts to dampen ENSO
- Leading to improved ENSO forecasts for both El Nino (2015, 2018) and La Nina (2017)

Best example is 2015 when both Aquarius and SMAP were available – so what is the impact of multiple SSS satellites?
Satellite SSS Assimilation Data

- Assimilate gridded fields of Aquarius V5 and SMAP V4
- Example of May 2015 (Big El Nino)

(Lilly and Lagerloef, 2008, Fore et al., 2016)
Forecast Impact of Aquarius Versus SMAP

May 2015: El Nino: May 16, 21, 26, 31
- No SSS
- AQ+SMAP
- AQ
- SMAP
May 2015 El Nino Forecasts

S2S

AQ+SMAP

AQ

SMAP
Conclusions

• Assimilation of SSS leads to density changes near the surface -> deepens MLD and shoals the BLT

• Deeper MLD acts to dampen ENSO signal

• Since S2S ENSO is generally too strong, assimilating SSS leads to (mostly) improved ENSO forecasts

• For the short overlapping period of Aquarius and SMAP (Mar – Jun 2015)
 a) Any assimilation of SSS improves El Nino forecast
 b) Aquarius combined with SMAP produces best El Nino forecast
• Please come by and visit our poster on Thursday –

Assessment of Sea Surface Salinity Products Using a Coupled ENSO Prediction Model

Thank You
Weak La Nina –Mar, Apr, May, Jun, 2016

S2S (No SSS Assimilation)

AQ+SMAP Assimilation
Weak La Nina– Apr 2016

S2S (No SSS Assimilation) AQ+SMAP Assimilation

SST anom [°C]
Validation Statistics – 1/17-1/18

Forecast NINO3.4 SST' Versus Observations

S2S (No SSS Assimilation)
AQ+SMAP Assimilation
GMAO Forecast from Sept. 2018

S2S (No SSS Assimilation)
AQ+SMAP Assimilation