NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Implementation of J-A Methodology Elastic-Plastic Crack Instability Analysis Capability into the WARP-3D CodeCharacterization of the near crack-tip stress/strain fields is the foundation of fracture mechanics. The description of the near tip stress field and the prediction of when fracture occurs is well established for brittle materials that exhibit linear elastic behavior. However, in ductile materials or conditions that violate linear elastic assumptions (Aluminum alloys, Al 2024-T3, Al 2024- T351 etc.), the elastic-plastic crack-tip stress fields are characterized by the Hutchison-Rice-Rosengren (HRR) field. The J-integral is commonly used to characterize amplitude of the HRR field under elastic-plastic conditions. The J-integral has been demonstrated for crack-tip fields that are under high constraint conditions (i.e., small-scale plasticity where the J-dominance is maintained). However, as the external load increases, yielding changes from small- to largescale plasticity and usually a loss of constraint (i.e., reduction in the triaxial stress field along the crack front). The loss of constraint leads to the deviation of the crack-tip stress fields from that given by the HRR field. Hence, the J-dominance will be gradually lost and additional parameter(s) are required to quantify the crack-tip stress fields and predict fracture behavior. The assessment objectives were to: 1) implement a two-parameter (i.e., J-A) fracture criterion into an elastic-plastic three-dimensional (3D) finite element analysis (FEA), 2) validate the implementation by comparison with the A parameter from literature data, 3) conduct material characterization tests to quantify the material behavior and provide fracture data for validation of the J-A fracture criteria, and (4) perform evaluations to establish if the J-A criteria can be used to predict fracture in a ductile metallic material (e.g., aluminum alloys). The A parameter in these criteria is the second parameter in a three-term elastic-plastic asymptotic expansion of the neartip stress behavior. A series of extensive FEAs were performed using WARP3D software package to obtain solutions for the A parameter for different specimen configurations. The methodology needed for the estimation of the A parameter in the asymptotic expansion was developed and implemented using Matlab®. A user material (UMAT) routine was used to model the material stress-strain response using a Ramberg-Osgood power law with a hardening exponent (n) and a material coefficient (alpha). This UMAT routine was successfully implemented in WARP3D software and validated through comparison with the experimental data. Three configurations were extracted from published results: 1) center cracked plate (CCP), 2) single edge-cracked plate (SECP), and 3) double edge-cracked plate (DECP). These configurations and four other configurations (three-hole tension (THT)), three-point bend (3PTB), three-hole compact tension (3PCT), and compact tension (CT)) were analyzed to verify the methodology that was developed and implemented into WARP3D. Solutions of the A parameter were obtained for remote tension loading conditions that started with small-scale yielding and continued into the large-scale plasticity regime. The results indicate that the methodology developed can be used to calculate the elastic-plastic J-A parameters for test specimens with a range of crack geometries, material strain hardening behaviors, and loading conditions. The J-A parameters were implemented as fracture criteria and used to predict the test results. For comparison, other fracture criteria were used to predict the same test results. Major findings include: The A constraint parameter A varies with specimen type and applied load thus accurate determination is crucial in predicting the failure load, and the A parameter is asymptotic as the failure load is approached, making an accurate determination difficult (i.e., small differences in the A parameter can cause large variations in failure load) for materials exhibiting elastic-plastic behavior. The failure predictions from J-A methodology were more accurate than the traditionally used KC and J methods, and have comparable scatter to that observed when using the crack-tip opening angle (CTOA) method. However, the J-A methodology requires considerable effort (expertise level and labor) to implement and to evaluate the A parameter for different specimen types and materials, or to apply this methodology to part-through crack (e.g., 3D problems) structural applications.
Document ID
20180007923
Acquisition Source
Langley Research Center
Document Type
Technical Memorandum (TM)
Authors
Hamm, Kenneth R., Jr.
(NASA Langley Research Center Hampton, VA, United States)
Seshadri, Banavara R.
(National Inst. of Aerospace Hampton, VA, United States)
Dawicke, David S.
(Analytical Services and Materials, Inc. Hampton, VA, United States)
Raju, Ivatury S.
(National Inst. of Aerospace Hampton, VA, United States)
Date Acquired
November 29, 2018
Publication Date
November 1, 2018
Subject Category
Structural Mechanics
Report/Patent Number
NESC-RP-14-01001
L-20979
NF1676L-31825
NASA/TM-2018-220115
Funding Number(s)
WBS: WBS 869021.05.07.02.11
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available