Ames Collaborative Support Facility/Sustainability Base

- Rodney A. Martin, Ph.D.
- rodney.martin@nasa.gov
- http://ti.arc.nasa.gov/profile/rmartin
- http://www.nasa.gov/ames/facilities/sustainabilitybase
- 5/18/16

2016 Facilities and Real Estate Conference
Glenn Research Center
Cleveland, Ohio
Sustainability Base

- 50,000 sq. ft. high-performance office building
- ~220 occupants
- LEED Platinum certified
Outline

- Overview of Sustainability Base
 - Introduction
 - Awards
 - Accomplishments
 - Research objectives and thrust areas
- Motivation for researching two Sustainability Base use case scenarios
- Integration of Building Systems - IT Challenges
 - Approach
 - Recommendations
 - Research areas to benefit
- Wrap-up
Sustainability Base

- Reduce impact on environment
- Minimize energy use
- Minimize potable water use
- Create an evolving sustainability research testbed
- Apply NASA + Partner technologies to improve performance
Awards

- 2013 California Governor’s Environmental and Economic Leadership Award (GEELA)
- 2013 Acterra Business Environmental Awards – Large Project
- 2012 LEED Platinum Certification (U.S. Green Building Council)
- 2011 “Leadership in Innovation Award” (Center on Environmental Innovation and Leadership)
- 2011 White House “Lean Green and Mean” GreenGov Award
- 2011 Engineering News Record California “Best Green Building Award”
- 2010 “Real Property Innovation Award” (Government Services Agency)
- 2010 “Green Project of the Year” Structures Award (San Jose Business Journal)
Sustainability Base

Accomplishments

- Partnering
 - Intra-Organizational: Facilitation of close working relationship between Facilities (Code J) & Intelligent Systems (Code TI) Divisions
 - Inter-Organizational: CMU-SV, Autodesk, Verdigris Technologies, EPRI, etc.

- Research
 - Invitation to publish a Springer-Nature Monograph Series
 - Ph.D. research, 1 M.S. Thesis, 10 undergraduate internships

Acknowledgements

- Steve Zornetzer, Code D
- Rose Grymes, Code B
- Krisstina Wilmoth, Code D
- Scott Poll, Code TI
- Dougal Maclise, Code TI
- Mike Flynn, Code SCB
- Soheila Dianati, Code JCE
- Ray Schuler, Code JCE
- Dave Wong, Code JCE
- Kevin Fedor, Code JCM
- Robert Cormia, FDACC
- Darlene Wiedemann, Code B
Sustainability Base

Systems Health Management
- Investigate methods to determine
 - Anomalous conditions (“Detection”)
 - Faulted state (“Diagnostics”)
 - Time to failure (“Prognostics”)
 - Response to take (“Mitigation”)
- Hypothesis: Systems health management leads to more cost effective building maintenance and operations (e.g. CBM – Condition-Based Maintenance)

Data Mining
- Use computer algorithms to find anomalies
- Build knowledge bases of system behavior
- Hypothesis: Data mining identifies subtle changes in building performance missed by simple threshold-based detection schemes

Intelligent Integrated Control
- Apply integrated intelligent, advanced control techniques to the built environment
- Hypothesis: Overall building performance can be improved, energy usage can be reduced, and individual occupant comfort can be better achieved
Provides Open, Special-Purpose Functionality

- Goal is to provide an open-source tool which can be used specifically for the prediction or forecasting of adverse events in time series data.
- Provides a single, unifying framework in which to compare a variety of combinations of algorithmic approaches addressing this problem.
- Provides a platform whose intention is to act as a catalyst in advancing the state of the art in technologies related to this problem.
- MSET (Multivariate State Estimation Technique) and variations thereof is the current de facto industry gold standard for these technologies.
- Originally developed at Argonne National Laboratories.
- Has since been adapted for myriad applications spanning a broad range of disciplines.
Uses of the ACCEPT Framework for Sustainability Base

- Problems related to temperature fluctuations and subsequent thermal sensation complaints
- Leaking groundwater return/supply piping connections to heat pump
- Heat pump failures
- Critical alarms (e.g. hot water pump differential pressure)
Current Use Cases/Scenarios for ACCEPT

- Advance prediction of critical FMCS alarms in buildings

Hot Water Differential Pressure (Current Sensor) in N232, Sustainability Base on Feb. 13, 2014

- Continuous alarm data archived in N269
- Continuous alarm data recorded from FMCS
- Discrete alarm data recorded from FMCS

Pump off
Current Use Cases/Scenarios for ACCEPT

- Advance prediction of critical FMCS alarms in buildings

Hot Water Differential Pressure (Current Sensor) in N232, Sustainability Base from 02/12/14 to 05/06/14

- 2/13/14 alarms
- Differential Pressure Setpoint
- Differential Pressure Alarm Thresholds
- 2/13/14 within bounds
- All days other than 2/13/14
Current Use Cases/Scenarios for ACCEPT
• Cold Complaints in buildings
Current Use Cases/Scenarios for ACCEPT

- Sensors intended to characterize thermal comfort are based on the Wet Bulb Globe Temperature (WBGT) index

- The WBGT sensors compute a weighted average of the following:
 - Dry bulb temperature
 - Wet bulb temperature (based on %RH – relative humidity)
 - Mean radiant (“black bulb”) temperature

- Hypothesis of facilities staff: notoriously “biased high,” and not necessarily representative of actual thermal comfort, resulting in building running cold

- We can roughly approximate this hypothesis with a simple experiment

- We’d like to test other hypotheses using an empirical data-driven approach (CMU-SV), for research purposes and enhanced isolation capability
Proposed Solution to IT Challenges

Problem definition

- Lack of easy access to integrated data generated from various building systems
- Deficiencies exist with current infrastructure
 - Direct access to native software interface (Siemens Apogee Insight)
 - Polling procedure using a standard building-specific communication protocol (BACnet)

Background

- Lack of alignment of IT resources necessary to enable research vision of Sustainability Base’s charter
- Lesson learned - IT integration concepts addressed during design stage would have been beneficial

Expected Benefits

- Would directly benefit high performance Agency buildings
- Incorporate findings & recommendation into plans during the design and construction phases
Investigated two parallel solutions aiming to deliver a tool enabling near real-time or real-time access to a comprehensive suite of synchronized time series data stored in various databases

Approach #1: Schneider Electric’s StruxureWare turnkey solution.
Investigated two parallel solutions aiming to deliver a tool enabling near real-time or real-time access to a comprehensive suite of synchronized time series data stored in various databases.

Approach #2: Continued extension of the original in-house tools that were previously developed.
Recommendations

- There is a clearly delineated path to addressing fundamental requirements that lends itself well to moving forward and building a prototype that is flexible and extensible

- Recommend investment using outsourced solution
 - Submit solicitation to be formally competed through the procurement process. Possible vehicles:
 - SBIR/STTR
 - RFI

- Recommend continuation of development of in-house integrated tool development, leveraged by other projects and CMU-SV CA

- Verdigris Technologies has agreed to deploy sMAP solution has part of NRSAA
 - Systems to be integrated yet to be negotiated
Research Areas to Benefit: Energy, Occupant Feedback

- CMU-SV
 - Energy dashboard study to raise awareness of workstation plug load consumption habits for building occupants
 - Will incentivize occupants with best reductions in consumption on weekly basis
 - Can collect occupant feedback on other issues (comfort, temperature, etc.)
Other Research Areas to Benefit
HVAC, Occupant Feedback

- Verdigris Technologies
 - CTs can be used to disaggregate loads
 - Visibility into plug loads via coordination w/CMU on labels
 - Dedicates circuits for larger loads (lighting, HVAC, etc.) can also be monitored

- Occupant Satisfaction
 - Mechoshades
 - Cold Complaints

- HVAC Equipment problems
 - Groundwater pipe leaks
 - Heat pump failures
 - Critical alarms (e.g. hot water pump differential pressure)

- New sensors (UCB)
 - Lighting
 - PECS
Opportunities exist to using current technology derived from existing NASA research areas to make dramatic improvements in managing our built environment:

- Occupant satisfaction and comfort
- Water & energy consumption
- Improved/Streamlined building operations & maintenance activities

Integration of Building Systems will enable:

- Deeper insights into latent, unknown problems
- Better visibility into known problem areas
 - Increased predictive capability
 - Ability to assist with isolation of contributing factors, facilitating a more streamlined diagnostics process
- Enable seamless deployment of novel sensing capabilities/technologies
Questions?

- Contact Rodney A. Martin, rodney.martin@nasa.gov
- +1(650) 604-1334, http://ti.arc.nasa.gov/profile/rmartin
- SB website: http://www.nasa.gov/ames/facilities/sustainabilitybase