On the Usage of Recalibrated Radiance in Reanalysis Experiments

Mohar Chattopadhyay$^{1,2}$
Will McCarty$^1$ and Isaac Moradi$^{1,3}$

$^1$Global Modelling and Assimilation Office, NASA GSFC
$^2$Science System and Application Inc.
$^3$ESSIC, University of Maryland
Motivation

- Sudden changes in background departure of Channel 14 in MERRA-2
  - Introduction of NOAA-17 AMSU-A
  - Introduction of AQUA AMSU-A
  - Data gap of NOAA16 AMSU-A on 19-28 November 2002

- Loss of NOAA-16 AMSU-A reflected in upper stratosphere temperature
  - Mean T shown at 2hPa and between 20-50° S
Motivation

This effort aims to explore the impact of alternate data-source/inter-calibrated radiance on a similar system by:

- Conducting experiments using inter-calibrated radiance to test the sensitivity of the system
- Study if these new data sets can successfully alleviate sensitivity of temperature in upper stratosphere.
Ferraro et al. (2016):
- Channels 1, 2, 3 and 15 which have 23, 31, 50, 89 GHz frequency
- Corrections: Viewing angle, location dependent bias and many more

Zou and Wang (2013):
- Simultaneous Nadir Overpass (SNO) CH6 from NOAA-18 and CH(4-7) and CH(8-14) from NOAA-15 as reference
- Integrated Microwave Inter-Calibration Approach (IMICA) method to obtain a long-term data product
- Correction derived from the global ocean differences between Aqua and the reference satellite.

### Data/Experiment Design

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>N/A</td>
<td>Antenna Temperature bufr stream used in MERRA-2</td>
</tr>
<tr>
<td>FERRARO</td>
<td>Ferraro et al. 2016</td>
<td>Inter-calibrated AMSU-A measurements for Channels 1-3, 15</td>
</tr>
<tr>
<td>Z&amp;W</td>
<td>Zou and Wang 2013</td>
<td>Inter-calibrated AMSU-A measurements for Channels 3-14</td>
</tr>
<tr>
<td>NOAA</td>
<td>NOAA KLM User’s Guide, 1999</td>
<td>Antenna Temperature acquired from Z&amp;W based on NOAA CLASS</td>
</tr>
</tbody>
</table>
Experiment Design

Assimilation (3DVar) and the model configurations are similar to MERRA-2 specification

Horizontal Resolution C90 ~100km (MERRA-2 C180 ~50km)

72 vertical levels to 0.1 hPa

Study period: 2 July – 31 December 2002

<table>
<thead>
<tr>
<th>Experiment</th>
<th>AMSU-A Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>M2</td>
</tr>
<tr>
<td>EXP_TANT</td>
<td>NOAA</td>
</tr>
<tr>
<td>EXP_IC</td>
<td>FERRARO</td>
</tr>
<tr>
<td>EXP_IC14</td>
<td>NOAA</td>
</tr>
<tr>
<td>MERRA-2</td>
<td>M2</td>
</tr>
</tbody>
</table>

AMSU-A Data Source:

- CH: 1-3, 15
- CH: 4-13
- CH: 14
- M2
- NOAA
- FERRARO
- Z&W
- M2
- Z&W
Climatology: MERRA-2 and CTL

- (a) Zonal mean temperature and zonal mean zonal wind for MERRA-2 from 2 July to 31 December 2002 is shown
- (b) Minimal differences between MERRA-2 and CTL
- This confirms that results from experiments at C90 can be translated to MERRA-2 at C180
Observation statistics: AMSU-A Channel 13

- AMSU-A channel 13 is bias corrected
- CTL bias correction values vary between instruments
- Implies difference in AMSU-A radiance between instruments in CTL
- Similar bias correction values in MERRA-2
- Values of bias correction are more consistent across sensors in EXP_TANT
AMSU-A Channel 14 is not bias corrected

Shows discontinuities in analysis and background departure with the change in observing system in CTL

EXP_TINT has a smoother analysis and background departure response compared to CTL

EXP_IC and EXP_IC14 show response similar to EXP_TINT

Issues with AMSU-A data used in MERRA-2
Upper Troposphere Temperature: July to December 2002

- A bias of average 4 K is noted between CTL and the other experiments.
- CTL shows a drop in upper stratospheric temperature with absence of NOAA-16 in assimilation.
- EXP_TANT and EXP_IC14 have very similar temperature profile than EXP_IC due to corrections applied to CH14 in Z&W radiance.

Time-series: Zonal Mean Temp at 2hPa/mean of 50° S and 20° S Lat
Upper Stratosphere Temperature: August 2004

- EXP_TANT, EXP_IC and EXP_IC14 simulated in 2004 to test stability
- MLS temperature assimilation from 5hPa and above commenced on 13 August 2004
- Negligible stratosphere temperature difference between experiments after MLS temperature assimilation
- MLS temperature acts as an anchor in upper stratosphere
Conclusion

Established that MERRA-2 data stream needs to be reprocessed for future reanalyses.

- The MERRA-2 AMSU-A data prior to 2005 was the same as MERRA.

At minimum, the early AMSU-A record needs to be reprocessed to be consistent with the base NOAA antenna temperature data record.

Using NOAA data-stream for AMSU-A will partially alleviate the upper stratosphere temperature sensitivity, but more considerations on the recalibrated radiances are underway.

Upper stratosphere temperature achieves stability with the introduction of MLS temperature assimilation:

- MLS temperatures anchor to the upper stratospheric temperature.
- Prior to MLS, this is primarily done by assimilation CH14 without bias correction, but that data record was questionable in previous GMAO reanalyses.
- MLS has no follow-on, and it has yet to be studied how much GNSSRO acts to anchor the radiances in the context of the upper stratosphere.