Medical System Trade Space Evaluation Tool for Exploration Missions

Chris Middour – Ames Research Center
Tony Jannette – Glenn Research Center
Jerry Myers – Glenn Research Center
Melinda Hailey – KBRwyle at Johnson Space Center
Jennifer Mindock – KBRwyle at Johnson Space Center

2018 Human Research Program Investigators’ Workshop
Outline

• Introduction
• Motivation for Tool
• Purpose of Tool
• Conceptual Model
• Logical Model
• Schedule
• Benefits
• Future Plans
• Acknowledgments
Introduction

• Ensuring crew health is of paramount importance as NASA takes the next steps – space exploration beyond low Earth orbit
 – The Deep Space Gateway (DSG) and Deep Space Transport (DST) vehicle designs need to integrate the medical system alongside traditional subsystems to make best use of limited mass, power, and volume
 – Determining how to accommodate human crews requires using historical experience coupled with risk assessments for the particular missions DSG and DST represent

• Trade Space Evaluation Tools
 – ExMC leadership needs to participate in trade studies
 • With medical community (medical conditions, capabilities, risks)
 – FY18 focus is on “Loss of Crew Life” risk metric
 – Support identification of technology gaps
 • With vehicle design community (mass, volume, power)
 – Need timely turnaround to keep up with vehicle design process
Motivation for Developing Medical System Tool

<table>
<thead>
<tr>
<th>Category</th>
<th>ISS</th>
<th>Gateway – Lunar</th>
<th>Transport – Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response to Acute Symptoms</td>
<td>Stabilize and Evacuate</td>
<td></td>
<td>Stand and Fight</td>
</tr>
<tr>
<td>Primary Caregiver</td>
<td>Earth Medical Ops</td>
<td></td>
<td>Physician Astronaut</td>
</tr>
<tr>
<td>Level of Care</td>
<td>4: trauma care, diagnostics, private audio/video</td>
<td>5: 4 + basic surgical care</td>
<td></td>
</tr>
<tr>
<td>Mission Length</td>
<td>180 days</td>
<td>6 to 42 days</td>
<td>2 to 3 Years</td>
</tr>
<tr>
<td>Time to Definitive Care</td>
<td>Less than 24 hours</td>
<td>Days</td>
<td>Months to Years</td>
</tr>
<tr>
<td>Crew Communication Delays with Earth</td>
<td>Real-time</td>
<td>Less than 3 seconds</td>
<td>Up to 42 minutes round-trip</td>
</tr>
<tr>
<td>Medical Resupply Time</td>
<td>Months</td>
<td>No resupply</td>
<td>No resupply</td>
</tr>
</tbody>
</table>

Exploration Missions Require Paradigm Shift in Medical Care
- Lunar – no resupply
- Mars – crew autonomy from Earth, physician astronaut primary caregiver

Departure from prior experience
ExMC is leveraging prior efforts to produce an Integrated Risk Analysis tool to

- Inform the design of Medical Systems for Deep Space Exploration Missions
- Enable “what if” scenarios to be done quickly in response to varied risk postures, missions, and/or mass, power, and volume constraints
 - “What if medical system mass were cut by 50%? How would risk be affected?”
- Identify “gaps” in capability that require research or technology development
- Establish infrastructure to coordinate with other crew health and performance tools
- Provide a quick turnaround in answering queries (days, not months)
- Provide consistent results across the set of tools

Trade Option Characterization

<table>
<thead>
<tr>
<th>Medical conditions addressed</th>
<th>Medical Standards met</th>
<th>Master equipment list</th>
<th>Mission characteristics (trajectory, communications, duration)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Parameter x</th>
<th>Risk (metric y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option n</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conceptual Model: Phase I

Phase I: Assemble Data

Knowledge
Medical Research
Spaceflight Medicine

- Apollo, Space Shuttle, ISS, Twins study, bed rest studies
- Spaceflight effects on physiology
- Countermeasures

Doctors and Clinicians

- Medical Conditions
 - Probabilities, Durations
- Medical Capabilities
 - Means to Monitor, Diagnose, Treat
- Resources
 - Hardware, Software, Skillsets, Drugs
 - Mass, Power, Volume

Medical Item Database
Captures clinician-defined data and relationships

### Condition	Probability
SKIN ABRASION / LACERATION | Best/worst
DENTAL: TOOTHACHE | Best/worst
ALTITUDE SICKNESS | Best/worst

Capability
- Perform Physical Exam and Conduct Screening exams/tests
 - Physical Exam - Abdomen
 - Physical Exam - Trauma
- Perform Imaging
 - Imaging - Ultrasound, Linear probe
 - Imaging - still/ video photography, external
- Assess and monitor vital signs
 - Vital Signs - Heart Rate
 - Vital Signs - SpO2

Resource

<table>
<thead>
<tr>
<th>Resource</th>
<th>Mass</th>
<th>Power</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALGESIC_ORAL_WEAK</td>
<td>ASPIRIN 325MG TAB.</td>
<td>kg</td>
<td>watts</td>
</tr>
<tr>
<td>FLEX_ULTRASOUND</td>
<td></td>
<td>kg</td>
<td>watts</td>
</tr>
</tbody>
</table>

Phase II
Conceptual Model: Phase II

Phase II: Analysis, Trade Studies

Medical Item Database
- Medical Conditions
- Medical Capabilities
- Resources

Design Reference Mission Parameters
- Crew
 - Number of crew, gender
 - Mission Parameters
 - Mission length
 - EVA in ConOps (yes/no)
 - Mass/Power/Volume allocations
 - Halo Orbit @ Moon: 6 to 400 days
 - Mars Rendezvous: 2 years
 - Mars Landing: 3 years

Dynamic Probabilistic Risk Assessment

Doctors and Clinicians
- Risk of Loss of Crew

Vehicle Designers
- Mass, Power, Volume required

Deep Space Gateway Model (SysML)
- **Deep Space Gateway Medical System Model**
- Represents human health standards for spaceflight and medical system requirements
- Mass and power constraints

MEDPRAT – Medical Extensible Dynamic Probabilistic Risk Analysis Tool
Models a customer-defined mission to produce risk of Loss of Crew Life

Iterate until physical constraints met, and risk level is acceptable
Logical Model: Integrated Tool

Clinicians

Interpret risks

Validate/approve results

Medical Item Database

Medical Conditions
Capability Category
Actions
Equipment/Resources List

Design Reference Missions
Mission Parameters

Risk Analysis
MEDPRAT
Risk of LOC, Mass, Power Summary

Systems Engineering Tools
Deep Space Gateway Model
Functional Model
Requirements
Schedule

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th></th>
<th></th>
<th></th>
<th>2018</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dec</td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
<td>May</td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
</tr>
</tbody>
</table>

2017

- Define Goals and Objectives
- Identify gaps between goals and existing component capabilities

2018

- Baseline Design
- Baseline Components
- Integrate, Test, Validate
- Demo Dry Run
- Demo for Stakeholders
Benefits

Enable medical system to inform vehicle design up front
 Enable trades between risk, mass, power, and volume

Integrate medical system model in vehicle model
 Model captures medical requirements and architecture to integrate into vehicle model

Identify medical technology and method gaps
 Identify areas of medical technology that need further research and development
Future Plans

Demonstration of capabilities in FY2018

Integrate support tool
 Ensure tool is evolvable to integrate with future tools
 SOLV, workstation evaluation, decision support

Identify gaps in medical capabilities
 Identify medical health monitoring, diagnosis, and/or treatments without spaceflight heritage

Optimize software
 Auto-select resources to mitigate risk based on pre-set parameters
Acknowledgements

- Erik Antonsen
- Tyler Burba
- Debra Goodenow
- Melinda Hailey
- Tony Jannette
- Kara Latorella
- Kris Lehnhardt
- Jennifer Mindock
- Jerry Myers
- Bara Reyna
- Nevan Simone