Wheat Crop in the Advanced Plant Habitat of the International Space Station

• Oscar Monje, Jeffrey T. Richards
 • AECOM – LASSO KSC
• Dinah I. Dimapilis
 • Jacobs – TOSC KSC
• Gillermo M. Tellez-Giron, Matthew De Mars
 • Sierra Nevada (formerly Orbitec)
• Nicole F. Dufour, Howard G. Levine, and Bryan G. Onate
 • NASA / KSC

2018 ASA and CSSA Meeting, Baltimore, MD
Nov 4-7 2018
Advanced Plant Habitat

An automated plant growth facility for conducting plant research supporting space biology and food production projects on the International Space Station (ISS).

Plants are grown in the Science Carrier (SC) of the APH, (0.2 m² instrumented) root module.

The SC is packed with media, seeded on Earth, and transferred dry to the APH facility on ISS. The plant experiments are initiated when the SC is installed in the APH growth chamber and it is fully wetted.

The planting and germination protocols for growing wheat (cv Apogee) and Arabidopsis (cv Colombia) were developed and tested at KSC in the APH Engineering Development Unit (EDU). Protocols were tested on orbit during the post-installation growth checkout of APH on ISS.

Hardware Validation – 1st plant growth test
APH Facility – Assembly / Functional Test

- APH - transported to ISS on SpaceX 11 and OA-7.
- APH - assembled on the Kibo Module in 27Oct17.
- First power-up and 5-day functional test - 27Nov to 1Dec 2017 tested:
 - commanding, telemetry, and data retrieval from PHARMER.
 - T/RH control modules at 23 C/70% RH, 18 C/50% RH, 18 C/90% RH, 30 C/90% RH, and 30 C/50% RH.
 - Light levels
 - CO$_2$ scrubbing, CO$_2$ injection, Ethylene Scrubbing functions
 - Experiment Profile scripts (T, RH, CO$_2$, Pictures).
- An acoustic test was completed on 8Dec17.
Activated APH 19Jan18
Initiated First Plant Test on 22Jan18 - verify that science is supported on APH hardware.
- Install pre-planted SC: WT Arabidopsis and Apogee semi-dwarf wheat
- Two week growth of WT Arabidopsis and 33 days of wheat conducted to demonstrate adequate plant growth for future science experiments.
- Demonstrate and evaluate performance of on-orbit watering protocols.

WT Arabidopsis – verify planting protocols of PH-01 Experiment.
Wheat Plants – provide a biological ‘load’ on the system.
Demonstrate on-orbit watering protocol.
Demonstrate on-orbit germination / harvest protocols.
Demonstrate experiment profile scripts
APH - Subsystems

The APH communicates with crew via a laptop

Ground commands from the KSC Experiment Monitoring Area
Subsystems

Growth Light Assembly

Growth Chamber

ISIS Drawers

Power Distribution Assembly
GLA - Spectral Quality & Intensity

0-400 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at 450 nm \(\pm 10 \) nm

0-100 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at 525 nm \(\pm 10 \) nm

0-600 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at 630 nm \(\pm 10 \) nm

PI Mixture

IR 0-50 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at 735 nm \(\pm 10 \) nm

W 0-600 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at 400-700 nm
APH Science Carrier

- Four quadrants – independent moisture control
- Baseline – TRL-9 porous substrate / slow release fertilizer
- Pre-planted / Contains water and substrate
Planting and Germination

planting protocols (launch vibration):
- Preparing the planting media, foam – sift, autoclave
- Packing (legacy to Mir, BPS)
- Seeding the SC (immobilize seeds).

germination protocols:
- Seed sterilization
- Determining the wicking system used to germinate seeds
- Determine environmental conditions to ensure germination
- Thinning as needed
Context: Spaceflight Plant Growth Systems

APH – current capabilities

• Automated substrate-based watering system – 0.2 m² - Active
• Cultural Conditions
 • LED lighting: 0 to 1000 umol/m²s, photoperiod
 • Spectral bands: white, blue, green, red, far red
 • Environmental control: CO₂, Tair, RH, soil moisture, ventilation
 • Teleoperation via commanding: manual mode, scripts
 • Crew tended functions: planting, harvest, sensors, maintenance
 • Imagery: aerial growth rates, health, watering
Arabidopsis (Quadrants 2 & 3) initiated on 1/22/18.
Apogee wheat (Quadrants 1 & 4) Initiated on 2/7-8/18.
Feb 22, 26, harvest Mar 6, 9, 12 2018 - Arabidopsis harvested on Mar 6 – observed debris containment. Apogee wheat (Quadrants 1 & 4) was 32 days old on Mar12.
Nondestructive data – Gas exchange

• APH measures nondestructive growth data – C fluxes.
• Example: CO$_2$ Response Curves from 20 day old wheat

CO$_2$ Drawdown Technique:
- Change the light level, disable CO$_2$ control, and photosynthesis consumes chamber CO$_2$ - drawdown.
- Allows Light response curves to be measured as well.
- Daily Growth – Lights come on.

ISS 2002 - BPS – Biomass Production System
PESTO - Photosynthesis Experiment Subsystem Testing and Operations - PI_G. Stutte

Measuring CO$_2$ and light response curves of wheat plants in microgravity
Wheat harvest was conducted by removing the SC - Astronaut Norishige “Nemo” Kanai
Conclusions

• APH Facility was installed, assembled and validated for conducting plant research on ISS.
• Two species – Wheat and Arabidopsis plants were successfully grown from seed and harvested after 30 days of growth on ISS.
• Validated planting, germination and watering protocols.
• Collected nondestructive plant growth data – space crop model.
• Hardware supports science.

Go APH!
Acknowledgements

APH was sponsored by NASA’s ISS Program and Space Life and Physical Sciences Research and Applications Division (SLPSRA) and co-developed by NASA and Sierra Nevada Corp. (formerly ORBITEC) of Madison, Wisconsin.

APH is available to support SLPSRA selected fundamental biology plus U.S. National Laboratory investigations sponsored by the Center for the Advancement of Science in Space.
Questions?