Examining convective signatures in scatterometer data

Timothy Lang1, Piyush Garg2, Georgios Priftis3, Steve Nesbitt2, Themis Chronis3, Richard Lindsley4

1NASA Marshall Space Flight Center
2University of Illinois at Urbana-Champaign
3University of Alabama in Huntsville
4Remote Sensing Systems
Background

• Scatterometers have been used repeatedly to examine convectively driven winds near precipitation

• Recent work (e.g., Portabella et al. 2012, Elsaesser and Kummerow 2013, Kilpatrick and Xie 2015) has indicated that real signatures are observed despite confounding issue of rain contamination

• OVWST-funded work culminating in Priftis et al. (2018) demonstrated value of using ground-based polarimetric Doppler radar in concert with scatterometers to understand low-level winds near mesoscale convection

• OVWST-funded work culminating in Garg et al. (2018) introduced a novel technique for identifying cold pools with scatterometers
Doppler comparison

- Resample NEXRAD 2D winds to ASCAT 12.5-km resolution
- ASCAT low-level divergence associated with leading edge of precipitation system
- Doppler radar shows low-level convergence and turning of winds out in front of storm
Polarimetric radar comparison

- Resample NEXRAD to ASCAT 12.5-km resolution
- Rain rate and median volume diameter thresholds that lead to triggering of ASCAT QC flags vary by case/overpass
- However, ice and liquid water paths for unflagged ASCAT obs are nearly always < 0.5 kg m$^{-2}$.
• We hypothesize that an approach based on closed areas of wind gradients (or gradient features – GFs) can be used to identify the cold pools over tropical oceans.

• Cold pools form a gust front boundary, thus creating an area of steep gradients in horizontal winds.

• We identify the areas of increased scalar gradients in the horizontal wind using:

\[
|\nabla \vec{V}| = \begin{bmatrix}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}
\end{bmatrix}
\]
• Wind gradients will surround a cold pool
• Cold pool size related to parent storm size and organization
• Ostensibly detectable via scatterometer
Example from WRF simulation

- Calculate gradient wind magnitude in resampled output from WRF simulation of DYNAMO convection
- Identify gradient features (GFs) using standard image processing and edge detection analysis
- GFs correspond well to simulated T_v depressions (i.e., cold pools)
Wind gradients become more sharply defined as product resolution improves
Gradient Feature Global Analysis

- Rain-flagged data removed from consideration

- Density corresponds well to known global distribution of tropical rainfall

- Largest GFs in/near ITCZ

- Increased eccentricity (i.e., more linear) in higher latitudes, eastern Pacific, and near coastlines
Thornton et al. (2017; GRL)

- Lightning enhanced by about a factor of ~2 directly over two of the busiest shipping lanes in the Indian Ocean and South China Sea

- Environmental factors do not explain the enhancement

- Study hypothesizes that ship exhaust particles change storm cloud microphysics, causing enhanced condensate in mixed-phase region and thus lightning
Ship track signatures also observed in ASCAT GF dataset
• Consistent with presence of more intense convection – more gust fronts expected!
• Or related to ship reflections from busy shipping lanes?
Convective Signatures in CYGNSS Data

- Combine CYGNSS specular point tracks with IMERG precipitation
- Have found numerous examples of wind gradients (B) in/near significant convective precipitation (A)
- Gradients not always observed in NWP analyses

Ruf et al. (2018)
Conclusions

• Convective signatures are evident in scatterometer data

• Polarimetric and Doppler radar is useful to help cross-check winds and rain flags and thus help distinguish between good/corrupted patterns

• GF technique shows excellent promise, particularly when applied to higher-resolution data

• Potential corroboration of enhanced convection in busy shipping lanes (or evidence that ships do provide significant scatterometer signature)

• CYGNSS provides a new avenue for cross-checking scatterometer-detected convective signatures