Simulation of Li+ in Ionic Liquids

Structure, Transport, and Electrochemical Windows

Justin B. Haskins1 and John W. Lawson2

1AMA, Inc., NASA Ames Research Center
2NASA Ames Research Center
Collaborators

NASA Ames Research Center
John W. Lawson
Charles W. Bauschlicher
Justin B. Haskins
Josh D. Monk

NASA Glenn Research Center
James J. Wu
Dionne M. Hernandez
William R. Bennett
Vadim Lvovich

Army Research Center
Oleg Borodin
Green Aviation at NASA

Efficient Aircraft: NASA LEAPTech

UAVs: NASA “Greased-Lightning”

Solar-Battery Hybrid: NASA “Pathfinder”

Battery-Gas Hybrid: Boeing “SUGAR Volt”
Battery Energy Density Limitations on Green Aviation

Major requirement is: High Energy Density

Other requirements are rechargeable, safety, power, recharge time, cost, etc.
Li-air battery chemistry: The reaction pathway is shown with lithium metal (Li metal) and oxygen (O₂) reacting to form lithium superoxide (Li₂O₂). The electrolyte is indicated by arrows and ions (Li⁺) and electrons (e⁻) are depicted.

Electrolytes for Li-metal: An SEM image shows the morphology of the electrode material with lithium deposits visible.

Structural electrolytes: A molecular structure is shown with atoms and bonds indicating the chemical composition.

Hybrid battery/supercapacitors: A graph plots power (W) against energy (Wh) comparing hybrid, ultracapacitor, and battery technologies.
Ionic Liquid Electrolytes for Li-metal Electrodes

Chosen for suppression of dendrites on Li\(^+\) metal anodes

Computational Study of Electrolytes

- Quantum simulations for structure:
 - small systems
 - Li/Anion cluster structure/energetics
 - Li-salt in liquid MD simulation
 - validation of classical approaches

- Classical Polarizable-MD (APPLE&P) simulation for transport:
 - large systems
 - diffusion and ionic conductivity
 - influence of Li-networks
 - transport mechanisms

Simulations provide insight into solvation and transport of Li-salts (difficult to assess from experiment)

Stable Solvation Shells of Li[TFSI] (Quantum)

Many potential 2, 3, and 4 anion Li$^+$ solvation shells

Raman Analysis of Li[TFSI] (Quantum)

2 and 3 [TFSI] coordination are shifted

Li Solvation Shell Stability (Quantum)

Highly unfavorable configurations exchange anions within 20 ps

Li[FSI]_2

Li[FSI]_3

20-100 ps; 12-16 pairs; T = 363 K

Stable Solvation Shells of Li[TFSI] (Quantum)

2-anion 3-anion 4-anion

2, 3 anion Li⁺ solvation shells for Li[TFSI]

Electrochemical Window (Quantum)

Electrochemical Window of Liquids with Pure and Hybrid Functional Bounds Experiment

High Accuracy Comparison (Quantum/Classical)

Figure 2: Radial distribution function (g(r)) as obtained by PFF-MD and DFT-MD simulation at \(T = 363 \) K for \(\text{Li}^+ \) with the ionic liquid anions (a) \([\text{TFSI}]^-\), (b) \([\text{FSI}]^-\), and (c) \([\text{BF}_4^-]\) as well as with the (d) O atoms in \([\text{TFSI}]^-\), O atoms in \([\text{FSI}]^-\), and F atoms in \([\text{BF}_4^-]\). The radial distributions are averaged over a 100 ps DFT-MD trajectory and a 6 ns PFF-MD trajectory, with one \(\text{Li}^+ \) in ionic liquid systems having 8, 10, and 12 pairs for \([\text{pyr14}]\)[TFSI], \([\text{pyr13}]\)[FSI], and \([\text{EMIM}]\)[BF\(_4^-\)], respectively.

Classical radial distributions in good agreement with DFT-MD

8-12 pairs; \(T = 363 \) K

Classical radial distributions in good agreement with DFT-MD

Diffusion (Classical)

[pyr14][TFSI]

[EMIM][BF₄]

[pyr13][FSI]

Measures within 10% of experiment

Figure 12: Diffusion coefficients for [pyr14][TFSI] in both (a) the neat form and (b) that having x\text{Li}^{+}=0.10, [EMIM][BF₄] in both (c) the neat form and (d) that having x\text{Li}^{+}=0.10, and [pyr13][FSI] in both (e) the neat form and (f) that having x\text{Li}^{+}=0.10 as a function of T. MD simulation results (solid symbols) are compared with available experiments (outlined symbols).
Ionic Conductivity (Classical)

Li-doping suppresses conductivity of all systems

Room-T Li Transport (Classical)

Li⁺ contribution to conduction plateaus at high salt doping

Li+ ... Li+ networks (PFF-MD)

Network Li+ share bridging anions

Conclusions

• Computational study of Li-doped ILs with experimental validation

• Solvation structure identification through complimentary simulation approaches

• Influence of networks on experimental anion solvation number

• Bulk transport and electrochemical properties in good agreement with experiment