Profiling Supercooled Liquid Water Clouds with Multi-Frequency Radar

Ian S. Adams, S. Joseph Munchak, Lihua Li, Paul Racette, Dong L. Wu, Gerald M. Heymsfield, and Adrian Loftus*

NASA Goddard Space Flight Center (GSFC)
*also with Earth System Science Interdisciplinary Center, University of Maryland (ESSIC, UMd)

Special Thanks to Rachael Kroodsma (GSFC & ESSIC, UMd), Kuo-Sen Kuo (GSFC & ESSIC, UMd), Craig Pelissier (GSFC & SSAI), Thomas Clune (GSFC)
Motivation

Mixed-phase clouds are an important variable in the Earth system
• Important component in microphysical processes
• Key parameter in climate radiation budget
• Impactful condition in aviation safety

Quantification of mixed-phase clouds on wide scales lacking
• Ground-based radar/lidar combinations provide some information
 o Observations are localized, e.g., Barrow, Alaska
 o Droplets typically at or below radar detectability limits
 o Lidar returns rapidly extinguished by liquid
Approach

Exploit differential measurements
• Backscatter (Rayleigh vs. non)
• Extinction (mainly gasses, cloud)

Multiparameter estimation
• Mass-weighted mean size (D_m)
• Precipitation water content
• Cloud water content
• Pristine / aggregate fraction
Phenomenology

Triple frequency space
• Particle density
• Extinction

Consistent forward modeling
• Scattering tables
• Rosenkranz gas absorption
 ○ Move to HITRAN + MT_CKD (AER)
• Liquid Permittivity (Turner et al. 2016)

https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp
Consistent hydrometeor scattering tables are necessary for consistent forward modeling of multi-frequency observations

- Depositional growth model
 - Reproduces planar and columnar geometries found in nature
- Aggregation performed heuristically
 - Randomly oriented
- Horizontally-oriented plates
 - T-matrix

https://storm.pps.eosdis.nasa.gov/storm/OpenSSP.jsp
Olympic Mountains Experiment (OLYMPEX)

<table>
<thead>
<tr>
<th>DC-8</th>
<th>Citation</th>
<th>ER-2 (Radar Definition Experiment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoSMIR
50, 89, 165, 183 +/- 1, 3, 8 GHz
Conical and cross track scans
Fixed polarization basis</td>
<td>King Hot Wire Probe LWC</td>
<td>AMPR
10.7, 19.35, 37.1, 85.5 GHz</td>
</tr>
<tr>
<td></td>
<td>CDP Cloud droplet size distribution</td>
<td>HIWRAP
Ku, Ka bands; Nadir pointing</td>
</tr>
<tr>
<td></td>
<td>2D-S Particle images</td>
<td>CRS
W band; Nadir pointing</td>
</tr>
<tr>
<td>APR-3
Ku, Ka, W band (dual polarization)
Cross-track scan</td>
<td>HVPS-3 (x2) Particle images</td>
<td>EXRAD
X band; Nadir pointing; Conical scan</td>
</tr>
<tr>
<td></td>
<td>Cloud Particle Imager (CPI)</td>
<td>AirMSPI
8 bands (355-935 nm)</td>
</tr>
<tr>
<td></td>
<td>CSI Cloud water content</td>
<td>CPL
355, 532, 1064 nm</td>
</tr>
<tr>
<td>Dropsondes
Pressure
Temperature
Relative humidity
Wind</td>
<td>2DC Particle images</td>
<td>eMAS
38 bands (0.4-15 μm)</td>
</tr>
<tr>
<td></td>
<td>Nevzorov Total water content</td>
<td></td>
</tr>
</tbody>
</table>
OLYPEX Case Study

03 December 2015

- DC-8 and ER-2 flights
 - Focus on APR-3 (DC-8)
- Citation
 - Stacked microphysics legs
 - Qualitative comparisons
 - Range of frozen habits
 - Presence of supercooled liquid clouds
Baseline Microphysics

Hitschfeld-Bordan retrieval (1954)

- Estimate D_m
 - Temperature dependent
- Default N_w profile
 - Depends on D_m
- 50% aggregate / pristine mix
- Mean profiles
 - Temperature
 - Water vapor
 - Cloud liquid water

87/25/18 IGARSS 2018
Results

• Retrievals match probes
 o Good qualitative match
• Bands of increased reflectivity correspond to large D_m and high aggregate fraction
• Significant amounts of supercooled liquid water
Beyond 1D Radar Retrievals

Three-dimensional effects not usually an issue for narrow radar beams; multiple scattering enhancement apparent at W-band

- Spatially dependent phenomenon

Additional information in polarimetric observations

- Particle alignment
- Hydrometeor discrimination
- Melting layer
Radiometers

Polarized mmwave brightness temperatures provide additional information on clouds and snow
- Aligned oblate/prolate particles
- Randomly oriented or small aspect ratio
- Differentiation between stratiform and deep convection
- Damping of polarization due to liquid water clouds (Panegrossi et al. 2017)
CoSSIR T_b-W Correlations
Summary

Multifrequency radar retrievals

• Partitioning of hydrometeor species
 o Pristine
 o Aggregates
 o Cloud liquid

• Good qualitative agreement with in situ probe data

Additional information in polarized brightness temperatures

• Aligned versus randomly oriented particles
• Presence of supercooled liquid
 o Liquid at cloud tops
Future work

- Other OLYMPEX cases
 - Interesting microphysics
 - Rimming
 - Polycrystals
- Multi-platform observations
 - CRS/HIWRAP on ER-2
- Melting particles
- Aligned ice
 - Scattering using IITM
- Other field campaigns
 - MC3E
 - IPHEX