Comparisons between Supercell Kinematics and Lightning Optical Energy Output from GLM

Dustin Conrad ¹, Christopher Schultz ², Mason Quick ³

¹ - University of Alabama - Huntsville
² - NASA Marshall Space Flight Center
³ - Earth System Science Center University of Alabama - Huntsville
Motivation

- With the launch of the Geostationary Lightning Mapper (GLM) in Nov 2016, continuous lightning observations of the Western Hemisphere from space are now available.

- Launches of additional and future lightning mappers on GOES-17 (Mar. 2018), Meteosat (2020s), and other geostationary satellites will allow continuous lightning measurements from +- 55° latitude.

- In addition to climatology, lightning activity can be used as an aid in nowcasting severe weather in regions with poor radar or LMA coverage.

- Before being applied on a global scale, need to understand lightning trends with severe weather using space based measurements coincident with ground based measurements.
Supercells across the North Alabama mesoscale domain

EF-1 and EF-0 tornadoes, along with multiple hail and wind reports, associated with two supercells

552 J/kg of mixed layer CAPE with 37 kts of 0-6 km shear

Occurred during the VORTEX-SE and GOES-R Validation field campaigns
LMA vs GLM Flash Rates

- GLM flash rates much lower than flash rates from LMA
 - GLM max flash rate around 45 flashes per minute, LMA near 275 flashes per minute
 - This trend seen with different LMA clustering thresholds and algorithms
 - Implications with lightning jump (poster 1018 Wed. 4-6pm)
- Cause of this difference?
 - Resolution?
 - Optical extinction?
 - Flash clustering?
- Goal of using optical energy is to remove the flash clustering process
Data and Methodology

- Lockheed-Martin reprocessed GLM data
- Undecimated LMA data from the North Alabama LMA (NALMA)
- LMATools flash clustering
 - 0.3 s time threshold
 - 3 km distance threshold
 - Chi square value of 1
 - 6 station minimum
- Radar data from KHTX and ARMOR manually unfolded and quality controlled
- Data gridded to a 1 km x 1 km x 0.5 km grid
- Multi-Doppler winds found using PyART Multidop package which uses a 3DVAR approach (Shapiro et al. 2009, Potvin et al. 2012)
- HID using CSURadartools (Dolan et al. 09, Dolan et al. 13)
Optical Energy

- Optical energy high as storm enters range of NALMA, then dives down to a minimum for an extended period of time.

- Optical energy remains low even during times of high flash rates in NALMA during period of severe hail.

- Increase in optical energy associated with increase in flash rate around 2240 UTC, coincident with time of the EF-0 tornado.
Updraft Volume vs Optical Energy

- Updraft volume larger during production of severe hail then tapers down near the end
 - Tornado occurred when storm was within the baseline
- Rise of optical energy at 2238 UTC occurs as the storm enters the dual-Doppler baseline
- Optical energy decreases as updraft volume increases
 - Rapid increase in cloud/precipitation hydrometeors
Graupel Volume vs Optical Energy

- Period of lowest optical energy from 2054-2234 UTC associated with highest hail/graupel volumes

- Peak of optical energy at 2238 UTC occurred with less hail/graupel

- However, optical energy does not increase as the hail/graupel volume decreases starting at 2200 UTC
Lightning Height

- Majority of sources are located above higher regions of hail/graupel
- LMA sources descend prior to tornadogenesis, when optical energy and flash rate both increase
- Hail and graupel are not the only hydrometeors that may be contributing to optical extinction - cloud water/ice have an impact
ISS LIS - Cullman Supercell

- ISS LIS overpass around 2245 UTC over supercell near Cullman County
- ISS LIS had 33 flashes during the 1 minute overpass, while GLM had 31 flashes; LMA showed 86 flashes
- Low Earth Orbit and Geostationary orbit showing similar flash rates, eliminating distance to the satellite as a possible means of error in underestimating flash rates for this case
ISS LIS - Cullman Supercell

- GLM and LIS flashes located in similar regions of the storm, with similar flash rates
- LIS did show 2 flashes east of the storm, where GLM did not
- LIS and GLM energies for each flash show similar trends, with higher optical energies located in similar areas
Conclusions

▸ Flash rates between LMA and space based observations differ, with satellite observations showing lower flash rates than LMA

▸ Updraft volume and optical energy may be inversely related, however it can not be confidently stated due to storm passing through dual-Doppler baseline

▸ Optical energy from GLM does not appear to be correlated with flash rates, from either LMA or GLM

▸ Optical energy remains low after hail/graupel volume decreases, however LMA sources are located above most of the hail/graupel

▸ ISS LIS and GLM both show reduced radiances within heavy precipitation, however further investigation into the flash properties of that storm is needed
Future Work

- Flash properties
- Cloud properties from GOES-16 ABI
- ER-2 Data
 - Electric field changes
 - FEGS
- Further investigation with ISS LIS
- P3 tail radar
Acknowledgements

- Dr. Larry Carey, Sarah Stough, Nathan Curtis - UAH
- Grant No.

Contact: dconrad@nsstc.uah.edu