A quantum-assisted algorithm for sampling applications in machine learning

Alejandro Perdomo-Ortiz
Research Scientist, Quantum Artificial Intelligence Laboratory
NASA Ames Research Center, Moffett Field, Calif., USA

Collaborators:
M. Benedetti, J. Realpe-Gomez, and R. Biswas.

Funding:

Quantum Annealing Workshop @ ICTP,
Trieste, Italy, August 24, 2016
Unsupervised learning (generative models)

Example application: Image reconstruction

LEARNED MODEL

$P(\text{Image})$

Damaged image

Reconstructed image
Unsupervised learning (generative models)

Learn the “best” model distribution that can generate the same kind of data.

Example application: Image reconstruction

DATASET

MODEL

\[P(\text{Image}) \]

Learning algorithm

NO LABELS

LEARNED MODEL

\[P(\text{Image}) \]

Reconstructed image

Damaged image

Example application: Image reconstruction
Supervised learning (discriminative models)

Learn the “best” model that can perform a specific task

MODEL

\[P(\text{Label} \mid \text{Image}) \]

Example application:
Image recognition

LEARNED MODEL

\[P(\text{Label} \mid \text{Image}) \]

DATASET

<table>
<thead>
<tr>
<th>26624</th>
<th>98</th>
<th>66</th>
<th>175</th>
</tr>
</thead>
</table>

Image to be recognized

Predicted label

61
Outline

• Why is it hard and interesting to sample from a Boltzmann distribution? Why, in principle, is it possible to do classical Gibbs sampling with a quantum annealer?

Amin. PRA, 92, 052323 (2015)

• How to do it experimentally? Results on our quantum-assisted learning (QuALe) algorithm for sampling applications. Feasibility question.

• Overcoming the “curse of limited connectivity” in hardware. How to work with general probabilistic graphical models beyond RBM? How to cope with noisy devices and future directions.

General BMs

Deep architectures
Unsupervised learning relies on sampling

“Unsupervised learning [...] has] been overshadowed by the successes of purely supervised learning. [...] We] expect **unsupervised learning to become far more important in the longer term**. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object.”

LeCun, Bengio, Hinton, Deep Learning, Nature 2015

“In the context of the deep learning approach to undirected modeling, it is rare to use any approach other than Gibbs sampling. **Improved sampling techniques are one possible research frontier.**”

“Most of the previous work in **generative models** has focused on variants of **Boltzmann Machines** [...] While these models are very powerful, each iteration of **training requires a computationally costly step of MCMC** to approximate derivatives of an intractable partition function (normalization constant), making it difficult to scale them to large datasets.”

Mansimov, Parisotto, Ba, Salakhudinov, under review for ICLR 2016
Restricted Boltzmann Machines and Beyond

Deep Belief Networks

RBM’s:

\[E(v, h) = -\sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij} h_i v_j - \sum_{j=1}^{m} b_j v_j - \sum_{i=1}^{n} c_i h_i \]

such that

\[p(h|v) = \prod_{i=1}^{n} p(h_i|v) \quad \text{and} \quad p(v|h) = \prod_{j=1}^{m} p(v_j|h). \]

Model:

\[p(v) = \sum_{h} p(v, h) = \frac{1}{Z} \sum_{h} e^{-E(v,h)}, \]

Training Method: Stochastic gradient ascent

\[\sum_{v\in S} \frac{\partial \ln \mathcal{L}(\theta|v)}{\partial W_{ij}} \propto \langle v_i h_j \rangle_{\text{data}} - \langle v_i h_j \rangle_{\text{model}} \]

\[= \langle v_i h_j \rangle_{p(h|v)q(v)} - \langle v_i h_j \rangle_{p(h,v)} \]

Computationally bottleneck
Foundational Theory of Quantum Annealing

Simulated Annealing
(Kirkpatrick et al., 1983)

- **Algorithm:** Start with a high temperature. Slowly reduce the intensity of thermal fluctuations aiming for low cost configurations.
- Transitions between states are over the barrier and due to thermal fluctuation.

\[E({z}) \]

\[\text{Temperature} \]
\[\text{Time} \]

Quantum Annealing
(Finnila et al., 1994, Kadowaki and Nishimori, 1998, Farhi et al., 2001)

- **Algorithm:** Start with large amplitude \(A(\tau) \) responsible for quantum fluctuations. Then, slowly turn it off while turning on the cost function amplitude, \(B(\tau) \).
- Transitions between states due to quantum fluctuations (tunneling).

\[H(\tau) = A(\tau) H_b + B(\tau) H_p \]
\[H_p = \sum_{1 \leq i \leq N} h_i \sigma_i^z + \sum_{1 \leq i < j \leq N} J_{ij} \sigma_i^z \sigma_j^z \]

\[E({z}) \]: Free energy surface (cost function).
\[E({z}, \tau=0) \]
\[E({z}, \tau<1) \]
\[E({z}, \tau=1) \]

{z}=configurations in solutions space

initialize in an easy to prepare full quantum superposition
quantum states explored by quantum tunneling
Final states: bit strings encoding the solution.
D-Wave System Capability

1) As a discrete optimization solver:

Given \{ h_j, J_{ij} \}, find \{ s_k = \pm 1 \} that minimizes

\[\xi(s_1, \ldots, s_N) = \sum_{j=1}^{N} h_j s_j + \sum_{i,j \in E} J_{ij} s_is_j \]

NP-hard problem

Potential NASA applications: planning, scheduling, fault diagnosis, graph analysis, communication networks, etc.

Also, quantum ML work by Google/DW.

QUBO: Quadratic Unconstrained Binary Optimization (Ising model in physics jargon).

2) As a physical device to sample from Boltzmann distribution:

Potential NASA applications in machine learning (e.g., training of deep-learning networks)

Early work:

Recent work:

Our recent work: Benedetti et al. PRA, 94, 022308 (2015)

- We provide a robust algorithm to estimate the effective temperature of problem instances in quantum annealers.
- Algorithm uses the same samples that will be used for the estimation of the gradient
Why sampling from classical Gibbs?

2) As a physical device to sample from Boltzmann distribution:

\[P_{\text{Boltzmann}} \propto \exp\left[-\frac{\xi(s_1, \ldots, s_N)}{T_{\text{eff}}}\right] \]

Potential NASA applications in machine learning (e.g., training of deep-learning networks)

\[T_{\text{eff}} > T_{\text{DW2X}} \]
Quantum-Assisted Learning Vs. Contrastive Divergence

Bars and Stripes dataset

Embedding on the D-Wave 2X

(a)
(b)

Pixel blocks embedding

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>d</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>i</td>
<td>j</td>
<td>m</td>
<td>n</td>
</tr>
<tr>
<td>k</td>
<td>l</td>
<td>o</td>
<td>p</td>
</tr>
</tbody>
</table>

Benedetti et al. *PRA, 94, 022308*
Non-trivial and correlated variations in the temperature

$T_{DW2X} = 0.033$

Benedetti et al. PRA, 94, 022308
Added features: Restart from CD-k

![Graph showing performance comparison]

- **CD-1**
- **QuALE with restart @ 250**
- **QuALE @ $T = 0.033$ with restart @ 250**

Benedetti et al. PRA, 94, 022308
Comparison with pseudo-likelihood

(a)

\[L_{av} \]

iteration

\[
\begin{align*}
\text{QuALE w/ pseudo likelihood} \\
\text{QuALE w/ linear regression}
\end{align*}
\]

Benedetti et al. PRA, 94, 022308
Quantum-assisted unsupervised learning on digits

Overcoming the curse of limited connectivity

7 logical (visible) variables

18 physical qubits
Quantum-assisted unsupervised learning on digits

Overcoming the curse of limited connectivity in physical devices.

42 fully-connected logical (visible) variables

How do we train this 794 qubit problem? (How do we analyze the (Gibbs) samples from this physical model?)

Immediate solution: Keep an eye on a paper coming out with a new gray-model approach for training noisy QA.

Quantum-assisted unsupervised learning on digits

OptDigits Datasets

Dataset: Optical Recognition of Handwritten Digits (OptDigits)
Quantum-assisted unsupervised learning on digits

OptDigits Datasets

Dataset: Optical Recognition of Handwritten Digits (OptDigits)
Quantum-assisted unsupervised learning on digits

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Quantum-assisted unsupervised learning on digits

- Experimental realization of quantum-assisted learning algorithm on 794 qubits, for a 42 fully-connected model.
- Fully unsupervised learning and generative model on a digit.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Quantum-assisted unsupervised learning on digits

- Experimental realization of quantum-assisted learning algorithm on 794 qubits, for a 42 fully-connected model.
- Fully unsupervised learning and generative model on a digit.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Quantum-assisted unsupervised learning on digits

- Experimental realization of quantum-assisted learning algorithm on 794 qubits, for a 42 fully-connected model.
- Fully unsupervised learning and generative model on a digit.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Quantum-assisted unsupervised learning on digits

- Experimental realization of quantum-assisted learning algorithm on 794 qubits, for a 42 fully-connected model.
- Fully unsupervised learning and generative model on a digit.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Quantum-assisted unsupervised learning on digits

Overcoming the curse of limited connectivity in hardware.

46 fully-connected logical (visible) variables

42 for pixels + 4 to one-hot encode the class (only digits 1-4)

Are the results from this training on 917 qubit experiment meaningful? Is the model capable of generating digits, as expected?
Quantum-assisted unsupervised learning on digits

Human or (quantum) machine? (Turing test)

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Quantum-assisted unsupervised learning on digits

Human or (quantum) machine? (Turing test)

• Experimental realization of quantum-assisted learning algorithm on 917 qubits, for a 46 fully-connected model.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)
Quantum-assisted unsupervised: artificial model

Reference model: Ising spin glass with 20 fully-connected spins (10 instances).

Ongoing research directions

Possible further boosting protocols by considering models to account explicitly for the noise in the quantum device.

Numerical simulations show that main limitation of current quantum annealers for Boltzmann machines applications is its sparse connectivity.

Extensions to deep learning architectures.

How “Boltzmannian” need the samples to be for QuALE to work.

Inference by using quantum distributions, such as those coming from future generation quantum computing technologies.

Is quantum tunneling, or any other quantum computational resource, relevant for machine learning/sampling applications? Can it be any faster than MCMC? Is it possible to achieve quantum supremacy in this domain?
Support slides