Biospecimen Culling: Temporal RNA Integrity Analysis Across Spaceflight Missions Dating from 1985 to 2011

Jon Rask¹, Kaushik Chakravarty², Alison J. French³, Sungshin Choi⁴, and Helen J. Stewart⁴

¹KBRwyle Labs, Space Biosciences Research Branch, Moffett Field, CA 94035
²Logyx LLC, Moffett Field, CA 94035
³Bionetics Corporation, Moffett Field, CA 94035
⁴KBRwyle Labs, Space Biosciences Flight Systems Implementation Branch, Moffett Field, CA 94035
⁵Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA 94035

November 7, 2016

jon.c.rask@nasa.gov
Outline

• Introduction
 • Ames Life Science Data Archive (ALSDA)
 • Biospecimen Storage Facility (BSF)
 • Institutional Scientific Collection (ISC)

• What is Biospecimen Culling?

• Objectives

• Approach

• Results

• Summary

• Future Work
Ames Life Science Data Archive

NASA Ames Research Center project node of the NASA Space Life Sciences Data Archive

Responsible for the capture, preservation and dissemination of life science data and biospecimens from NASA Ames-managed flight and ground experiments.
ARC Life Sciences Institutional Scientific Collection: The Biospecimen Storage Facility (BSF)

• The BSF maintains fixed and frozen biospecimens from Space Shuttle and International Space Station missions (1985 to current).

• Approved for storage of tissues with radioactive isotopes.

• Seven -86°C Freezers, ~0.6 m³ each, one is a back-up.

• Fail-safe power backup; connected to emergency generator; all units alarmed and monitored 24/7.

• Inventory management with secure database - species, tissue type, fixation, treatment, location, other metadata, and chain-of-custody information.
What is culling?

• Sampling of biospecimens in the Ames Life Sciences Institutional Scientific Collection to determine characteristics for disposition.

• Dispositions include:
 (1) Continue to store sample
 (2) Disposal
Objectives

1. Identify candidate biospecimens for RNA integrity analysis.
2. Perform extraction and purification of RNA.
3. Collect RNA integrity data from archived space flight tissues.
4. Prepare a NASA white paper and/or a manuscript.
5. Support and guide NASA policy on best practices for curation of biological collections (NPD 7100.xx Scientific Collections Directive), addressing storage duration and temperature, sample testing cycle and frequency.
Approach

Phase 1

Create and sort biospecimen list derived from the ALSDA tissue tracking system that contains tissues from 1985 to 2011

- Sort information on mission, launch date, payload, kind of organism, tissue type, number of tissue samples, radioactive tracers, storage temperature, and fixative used (if any).
- Develop standard operating procedures

Phase 2

Preparation and processing of selected biospecimens

- Determine RNA Integrity Number (RIN) of selected biospecimens

Phase 3

Support development of NASA scientific collections directives, perform additional sample analyses, draft manuscripts, outreach, draft requests for proposals
Approach: Criteria to Identify Candidate Biospecimens for RNA Analysis

• **Select in***
 - stored at -70°C or colder
 - Preserved in RNALater

• **Select out**
 - stored at 4°C/ambient or in aqueous buffer without fixative.
 - Dehydrated samples, stored at room temp, samples that have experienced freeze thaw cycles, or appear deteriorated.
 - Radioactive samples containing 3H-Thymidine and 3H-Proline (half life = 12.3 years).
 - Unlabeled

*~89 biospecimens identified as candidates RNA Analysis
**All select out specimens will be stored for future assessment
Results: Biospecimen Culling List Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Mission</th>
<th>Payload</th>
<th>Organism</th>
<th># of Biospecimens</th>
<th># of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/29/85</td>
<td>STS-51B</td>
<td>SL-3</td>
<td>Rat</td>
<td>9</td>
<td>>126</td>
</tr>
<tr>
<td>6/5/91</td>
<td>STS-40</td>
<td>SLS1</td>
<td>Rat</td>
<td>58</td>
<td>3346</td>
</tr>
<tr>
<td>4/8/93</td>
<td>STS-56</td>
<td>PARE.03</td>
<td>Rat</td>
<td>23</td>
<td>1615</td>
</tr>
<tr>
<td>10/18/93</td>
<td>STS-58</td>
<td>SLS2</td>
<td>Rat</td>
<td>56</td>
<td>>999</td>
</tr>
<tr>
<td>7/13/95</td>
<td>STS-70</td>
<td>NIH.R2</td>
<td>Rat</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>1/11/96</td>
<td>STS-72</td>
<td>NIH.R3</td>
<td>Rat</td>
<td>23</td>
<td>1022</td>
</tr>
<tr>
<td>12/5/01</td>
<td>STS-108</td>
<td>ADF</td>
<td>Quail</td>
<td>24</td>
<td>729</td>
</tr>
<tr>
<td>8/8/07</td>
<td>STS-118</td>
<td>CBTM2</td>
<td>Mouse</td>
<td>9</td>
<td>426</td>
</tr>
<tr>
<td>4/5/10</td>
<td>STS-131</td>
<td>Immune_STL</td>
<td>Mouse</td>
<td>4</td>
<td>180</td>
</tr>
<tr>
<td>2/24/11</td>
<td>STS-133</td>
<td>MI2</td>
<td>Mouse</td>
<td>8</td>
<td>>302</td>
</tr>
<tr>
<td>Totals</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>216</td>
<td>>8872</td>
</tr>
</tbody>
</table>
Results: RNA Analysis Candidates

<table>
<thead>
<tr>
<th>Date</th>
<th>Mission</th>
<th>Payload</th>
<th>Organism</th>
<th># of Biospecimens</th>
<th># of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/29/85</td>
<td>STS-51B</td>
<td>SL-3</td>
<td>Rat</td>
<td>8</td>
<td>>126</td>
</tr>
<tr>
<td>6/5/91</td>
<td>STS-40</td>
<td>SLS1</td>
<td>Rat</td>
<td>31</td>
<td>1376</td>
</tr>
<tr>
<td>10/18/93</td>
<td>STS-58</td>
<td>SLS2</td>
<td>Rat</td>
<td>40</td>
<td>>667</td>
</tr>
<tr>
<td>7/13/95</td>
<td>STS-70</td>
<td>NIH.R2</td>
<td>Rat</td>
<td>2</td>
<td>127</td>
</tr>
<tr>
<td>12/5/01</td>
<td>STS-108</td>
<td>ADF</td>
<td>Quail</td>
<td>5</td>
<td>135</td>
</tr>
<tr>
<td>8/8/07</td>
<td>STS-118</td>
<td>CBTM2</td>
<td>Mouse</td>
<td>8</td>
<td>384</td>
</tr>
<tr>
<td>2/24/11</td>
<td>STS-133</td>
<td>MI2</td>
<td>Mouse</td>
<td>3</td>
<td>168</td>
</tr>
<tr>
<td>Totals</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>97</td>
<td>>2983</td>
</tr>
</tbody>
</table>
Results: Common Tissue Types in the RNA Analysis Candidates

<table>
<thead>
<tr>
<th>Date</th>
<th>Mission</th>
<th>Payload</th>
<th>Organism</th>
<th>Liver</th>
<th>Lungs</th>
<th>Bone</th>
<th>Kidneys</th>
<th>Stomach</th>
<th>Adrenals</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/29/85</td>
<td>STS-51B</td>
<td>SL-3</td>
<td>Rat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6/5/91</td>
<td>STS-40</td>
<td>SLS1</td>
<td>Rat</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10/18/93</td>
<td>STS-58</td>
<td>SLS2</td>
<td>Rat</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7/13/95</td>
<td>STS-70</td>
<td>NIH.R2</td>
<td>Rat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>12/5/01</td>
<td>STS-108</td>
<td>ADF</td>
<td>Quail</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>8/8/07</td>
<td>STS-118</td>
<td>CBTM2</td>
<td>Mouse</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2/24/11</td>
<td>STS-133</td>
<td>MI2</td>
<td>Mouse</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Assumptions for RIN Data

8 or above: Viable for future omics analysis

5 to 7.9: Viable for qPCR.
Samples may still have viable DNA and could be used for genomics or immunohistochemistry.

Less than 5: Considered non-viable for RNA analysis.
The samples may still have viable DNA and could be used for genomics or immunochemistry.

RIN data will be made available to the science community.
Summary

- Developed an RNA-Integrity culling methodology, project documentation, and supporting operating procedures.
- Identified candidate biospecimens for analyses.
- Established Science Review Board to review disposition recommendations.
- Future sample analyses will assess storage duration and temperature, sample testing cycle and frequency.
- Created scientific investigation opportunities, including temporal assessment of tissue viability.
For More Information

NASA Life Science Data Archive (LSDA):
http://lsda.jsc.nasa.gov

Biospecimen Requests:
http://lsda.jsc.nasa.gov/common/datarequest.aspx

NASA Ames Life Science Data Archive (ALSDA):
https://www.nasa.gov/ames/research/space-biosciences/data-archive-project

NASA Ames Space Biosciences
https://www.nasa.gov/ames/research/space-biosciences

NASA Ames Institutional Science Collection: Contact Helen Stewart:
helen.j.stewart@nasa.gov
Acknowledgements

NASA Ames Research Center
 Elizabeth Taylor
 Helen Stewart
 Mike Skidmore
 Jon Rask
 Kaushik Chakravarty
 San-Huei Lai
 Alison French
 Rick Chen
 Sungshin Choi
 Oana Marcu
 Frances Donovan
 Alan Wood
 Matt Lera
 Science Review Board

NASA Kennedy Space Center
 Jeff Smith

Funding from NASA Space Biology Project