Safely Enabling Low-Altitude UAS Operations: Unmanned Aircraft System Traffic Management

Parimal Kopardekar, Ph.D.
NASA Senior Technologist for Air Transportation System, and Principal Investigator for UTM

DFS Technology Conference – The Drone Challenge
Stadthalle Langen, Germany
Innovate Relentlessly

Embracing innovation while respecting aviation’s safety tradition
Unmanned Aircraft Systems Applications

Embracing innovation
Where were we?

• Lack of rule

• Gaps in concepts for expanded multiple operations

• Lack of understanding in roles/responsibilities

• Lack of requirements for safe and scalable expanded operations

• Lack of requirements for scale and scalable urban operations

Overall interest in moving forward
Where are we now?

- Part 107 operational
- Pathfinders in action
- UTM concept of operations accepted
- UTM roles/responsibilities accepted
- UTM tests show promise
- Research underway for urban operations

FAA has shown agility and NASA focused research
What’s coming next?

• By 2020, 7M total and 2.6M commercial small UAS

• Urban and suburban personal air mobility operations

• UAS everywhere: in class A, B, C, D, E, and G airspace

• High altitude airspace operations (60,000 ft. and up)

• Commercial space operations

Characterizing uncontrolled and controlled operations
Each capability is targeted to type of application, geographical area and uses risk-based approach

CAPABILITY 1: SHOWED HOW TO ENABLE MULTIPLE OPERATIONS UNDER CONSTRAINTS
- Notification of area of operation
- Over unpopulated land or water
- Minimal general aviation traffic in area
- Contingencies handled by UAS pilot
- Enable agriculture, firefighting, infrastructure monitoring

CAPABILITY 2: SHOWED HOW TO ENABLE EXPANDED MULTIPLE OPERATIONS
- Beyond visual line-of-sight
- Tracking and low density operations
- Sparsely populated areas
- Procedures and “rules-of-the road”
- Longer range applications

CAPABILITY 3: FOCUSES ON HOW TO ENABLE MULTIPLE HETEROGENEOUS OPERATIONS
- Beyond visual line of sight/expanded
- Over moderately populated land
- Some interaction with manned aircraft
- Tracking, V2V, V2UTM and internet connected
- Public safety, limited package delivery

CAPABILITY 4: FOCUSES ON ENABLING URBAN OPERATIONS
- Beyond visual line of sight
- Urban environments, higher density
- Autonomous V2V, internet connected
- Large-scale contingencies mitigation
- News gathering, deliveries, personal use
Increasing Operational Risk, Complexity & Cost Drivers

Critical Technology Enablers

Earl Lawrence, Presented at Drone Advisory Committee

- **Hobbyist, VLOS (Part 101-E)**
- **Commercial Small UAS, VLOS (Part 107 and Ops over People Rule)**
- **BVLOS / Extended Operations (Part 107.xx)**
- **Integrated (Part xx)**

Pathfinder
- Pathfinder 1 VLOS Over People
- Pathfinder 2 EVLOS
- Pathfinder 3 BVLOS

Technologies
- Automated Airspace Notification & Authorization Tools
- Ground Based Sense & Avoid
- Low Altitude Automation and Scheduling (UTM)
- Geo-fencing Technologies
- Airborne Detect & Avoid

Sectors
- Hobbyist
- Commercial VLOS
- Commercial BVLOS
- Integrated

Sectors Framework
- Increasing Operational Risk, Complexity & Cost Drivers
- Registration Website
- Online Airspace Authorization
- Automated Airspace Notification & Authorization Tools
- Ground Based Sense & Avoid
- Low Altitude Automation and Scheduling (UTM)
- Geo-fencing Technologies
- Airborne Detect & Avoid
- Terminal Flight Data Manager
- NAS System Integration (CNS)

Frameworks
- Hobbyist, VLOS (Part 101-E)
- Commercial Small UAS, VLOS (Part 107 and Ops over People Rule)
- BVLOS / Extended Operations (Part 107.xx)
- Integrated (Part xx)
UTM Progress

- Concept of operations
- Roles/responsibilities – implications on who pays
- Information architecture paved way for FAA’s RFI
- Demonstrated initial feasibility of architecture, application protocol interface based approach, and overall construct
- Data exchange and protocols
- Demonstration of UTM TCL1 with all 6 test sites
- Initial demonstration of UTM TCL2 for BVLOS requirements

UTM R&D continues to make good progress
UTM Architecture

National Airspace System

Flight Information Management System

Supplemental Data Service Provider

UAS Service Provider

Public Safety

Public

Color Key:
- ANSP Function
- Operator Function
- Other Stakeholders

NAS Data Sources

Common data

NAS state

NAS impacts

Inter-data provider communication and coordination

Terrain Weather Surveillance Performance

Inter-USS communication and coordination

Operations, Constraints, Directives, Requests, Decisions

Operations, Deviations

Operation requests

Real-time information

Operations, Constraints, Modifications, Notifications, Information

UAS Operator

UAS

UAS Operator

UAS

UAS Operator

UAS
Innovate Relentlessly

Embracing innovation *while respecting* aviation’s safety tradition
Stages of Traffic Management: Balancing safety, efficiency, and scalability

From the New York Public Library at digitalcollections.nypl.org

From the New York Public Library at digitalcollections.nypl.org

Security Pacific National Bank Collection / Los Angeles Public Library at photos.lapl.org
UTM Key Lessons: Proving safety together

Beyond basics

- Disruptions, off-nominals and contingencies
 - Weather and wind effects, and need for better predictions
 - Priority access: Clearing airspace based on dynamic conditions
 - Lost/delayed communications
 - Vehicle malfunctions
 - Rogue operation and its influence on other operations
 - Cyber security
 - Lack of availability of GPS and degraded conditions

Airspace operations requirements based on solid research
Innovate Relentlessly

Embracing innovation while respecting aviation’s safety tradition

National UAS Standardized Testing and Rating (NUSTAR)
• Performance data is critical to safety and acceptance
• Underwriter’s laboratory for UAS
 – Weather conditions: wind, icing, fog, rain
 – Security: Spoofing, hacking, and interference
 – Noise
 – Detect and avoid tests under variety of conditions
 – Failure modes
 – Drop tests
 – Sub-system level performance (e.g., battery, propulsion)
 – Conformance to geo-fence
• Users: Insurance, regulators, manufacturers, consumers, researchers
• Forensics testing and recreation of accidents
UTM Next Steps

• Exercises with all FAA test sites for expanded/BVLOS operations
• Working groups: active collaboration
 – Concept of operations and use cases, Data exchange, Detect and avoid, Communication and navigation, and Performance
 – Spectrum and Weather
• Airspace research: Architecture, high density and constraints, airspace configurations, demand/capacity balance, communication and navigation, and contingencies
• Vehicle research: geo-fence conformance, DAA, track and locate, hazard avoidance, trajectory uncertainty, and last/first 50 feet operations
• Air/ground capabilities: Towards complex and heterogeneous operations

Culminate in joint FAA-NASA UTM pilot project
Expanding Vision

• Airspace categories: services provided and not provided by ANSP
• Ensure UTM success and deliver
• Personal air mobility – uncontrolled airspace and/or uncontrolled operation
• High altitude UTM construct for airspace operations
• Ultra high altitude construct for space traffic management
• Interest where services could be provided to improve current operations

UTM type paradigm appears to be expandable to other airspace
Beaver is a keystone species: UTM has potential to do so!
Beavers - beavering - to beaver!
Thank you for your contributions!