Impact of GMI all-sky radiance assimilation in the NASA GEOS forecast system

Ron Gelaro, Min-Jeong Kim, Will McCarty, Jianjun Jin
NASA Global Modeling and Assimilation Office

Seventh AMS Symposium on the Joint Center for Satellite Data Assimilation; 99th AMS Annual Meeting, Phoenix, Arizona, 6-10 January, 2019
GMI all-sky radiance assimilation in GEOS

All-sky assimilation of GPM Microwave Imager (GMI) radiances implemented in GEOS real-time production system on 11 July 2018

- GMI data selection
 - Six (of 13) GMI channels assimilated
 - Low-frequency: 5(23.8 GHz V), 6(36.5 GHz V), 7(36.5 GHz H)
 - High-frequency: 10(166 GHz V), 12(183.3 ±3 GHz V), 13(183.3 ±7 GHz V)
 - Observations over ocean surfaces only

- Upgrades to assimilation infrastructure
 - New control variables for hydrometeors: cloud liquid, cloud ice, rain, snow
 - Improved radiative transfer (3-bullet DDA, CRTM)
 - New background error (hybrid) and observation error (symmetric, Geer and Bauer 2011) models
 - Modified QC and bias correction

Details in Kim et al. (2019)
Hybrid background errors for hydrometeors

Longitudinal slice along 150°E

Climatological error standard deviation

Ensemble-based error standard deviation 12 Dec 2015 12UTC
Dynamic adjustments in precipitating regions

Hurricane Gaston case study

Dynamic impact of GMI all-sky radiances on GEOS analyses is demonstrated in a case study of Hurricane Gaston in which GMI data only (right) are assimilated
Dynamic adjustments in precipitating regions

Assimilation of GMI all-sky radiances in **hybrid 4D-EnVar** adjusts not only hydrometeors but also dynamic variables such as wind and pressure.
Pre-production experimentation

• Science testing
 • GEOS hybrid 4D-EnVar
 • 25-km GCM, 25-km GSI, 32 x 100-km EnKF
 • Control with full observing system
 • Experiments add GMI all-sky (or clear-sky) radiances only
 • Winter and summer 2016

• High-resolution parallel production
 • GEOS hybrid 4D-EnVar
 • 12.5-km GCM, 25-km GSI, 32 x 50-km EnKF
 • Full observing system plus GMI all-sky radiances
 • Model physics updates
 • Winter-Spring 2017/18
Science testing data assimilation feedback

GMI Data Counts

Observation Count per Analysis

GMI Channel

<table>
<thead>
<tr>
<th>GMI Channel</th>
<th>Total GMI (thinned)</th>
<th>All-Sky GMI</th>
<th>Clear-Sky GMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Background Fit to Satwinds 60N-60S

<table>
<thead>
<tr>
<th></th>
<th>U-wind</th>
<th></th>
<th>V-wind</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>STD</td>
<td>Mean</td>
<td>STD</td>
</tr>
<tr>
<td>All Levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No GMI</td>
<td>-0.050</td>
<td>2.74</td>
<td>-0.079</td>
<td>2.76</td>
</tr>
<tr>
<td>All-sky GMI</td>
<td>-0.042</td>
<td>2.75</td>
<td>-0.075</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>-16%</td>
<td>+0.3%</td>
<td>-5%</td>
<td>+0.7%</td>
</tr>
<tr>
<td>Low Levels (below 600hPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No GMI</td>
<td>-0.17</td>
<td>1.50</td>
<td>-0.017</td>
<td>1.47</td>
</tr>
<tr>
<td>All-sky GMI</td>
<td>-0.17</td>
<td>1.51</td>
<td>0.003</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>+0.7%</td>
<td>-82%</td>
<td>+0.7%</td>
</tr>
<tr>
<td>Mid Levels (400-600hPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No GMI</td>
<td>-0.25</td>
<td>2.89</td>
<td>-0.25</td>
<td>2.83</td>
</tr>
<tr>
<td>All-sky GMI</td>
<td>-0.24</td>
<td>2.89</td>
<td>-0.25</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>-4%</td>
<td>0%</td>
<td>0%</td>
<td>+0.4%</td>
</tr>
<tr>
<td>Upper Levels (above 400hPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No GMI</td>
<td>0.019</td>
<td>3.03</td>
<td>0.18</td>
<td>3.03</td>
</tr>
<tr>
<td>All-sky GMI</td>
<td>0.025</td>
<td>3.04</td>
<td>0.19</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>+32%</td>
<td>+0.3%</td>
<td>+5%</td>
<td>+0.7%</td>
</tr>
</tbody>
</table>
Science testing forecast scorecard

Control v. GMI all-sky

Dec 2016

Legend

- ▲ far better, significant (95% confidence)
- △ better, significant (90% confidence)
- ■ slightly better, significant (68% confidence)
- □ not really any difference
- △△ slightly worse, significant (68% confidence)
- ▼ worse, significant (90% confidence)
- ▼▼ far worse, significant (95% confidence)

Northern Hemisphere

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pressure Level</th>
<th>COR</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast Day</td>
<td>1 2 3 4 5 1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geopotential Height</td>
<td>100</td>
<td>▲▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Specific Humidity</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Temperature</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>U-Wind</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>V-Wind</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

Southern Hemisphere

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pressure Level</th>
<th>COR</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast Day</td>
<td>1 2 3 4 5 1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geopotential Height</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Specific Humidity</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Temperature</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>U-Wind</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>V-Wind</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

Tropics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pressure Level</th>
<th>COR</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast Day</td>
<td>1 2 3 4 5 1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geopotential Height</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Specific Humidity</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Temperature</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>U-Wind</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>V-Wind</td>
<td>100</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>
Science testing
Adding GMI all-sky radiances improves the initial state and leads to reduced error, especially in the Tropics. Largest impact is at day-1, with diminishing impact thereafter.

High-resolution parallel production
Combining GMI assimilation with retuned model physics extends the beneficial impacts into the medium range. The retuning modifies the effective radii and fall-rate of ice crystals.
Current GEOS production observation impacts

Global Moist Energy Norm Aug – Nov 2018 00UTC

Observation Count

Total Impact
Current GEOS production observation impacts

Global Moist Energy Norm Aug – Nov 2018 00UTC

Impact Per Observation

Fraction of Beneficial Obs

GPM GMI

NOAA-15 AMSUA
SNPP ATMS
NOAA-19 AMSUA
NOAA-18 AMSUA
NOAA-18 MHS
METOP-B MHS
METOP-B AMSUA
NOAA-18 AVHRR
METOP-A MHS
METOP-A AMSUA
METOP-A AVHRR
SNPP CrIS
GOES-15
AIRS
F17-SSMIS
METOP-A IASI
METOP-B IASI

GPM GMI

NOAA-18 MHS
SNPP ATMS
METOP-B MHS
METOP-A MHS
SNPP CrIS
METOP-A AVHRR
NOAA-18 AVHRR
GOES-15
NOAA-15 AMSUA
NOAA-19 AMSUA
NOAA-18 AMSUA
AIRS
METOP-A AMSUA
METOP-B IASI
F17-SSMIS
METOP-A IASI
METOP-B AMSUA

Observation Impact (J/kg) ×10^6

Observation Count Per Analysis

Fraction of Beneficial Obs (%)

Observation Count Per Analysis

×10^4

×10^5

×10^6
Current GEOS production observation impacts

Low Frequency

High Frequency
All-sky assimilation of GPM Microwave Imager (GMI) radiances was successfully implemented in the GEOS real-time production system on 11 July 2018.

All-sky GMI radiances have a significant positive impact on GEOS forecasts of tropospheric water vapor, temperature and winds especially in the tropics.

Assimilation of GMI all-sky radiances in hybrid 4D-EnVar adjusts not only hydrometeors but also dynamic variables such as wind and pressure.

GMI all-sky radiances over land surfaces will be included in a near-future implementation of the GEOS production system, as will all-sky radiances for MHS, ATMS, AMSU-A and AMSR-2.

All-sky techniques are being applied to historical microwave instruments such as TRMM/TMI for future GMAO reanalyses.