An Ocean-atmosphere Simulation for Studying Air-sea Interactions

Ehud STROBACH1,2, Andrea MOLOD2, Atanas TRAYANOV2,3, William PUTMAN2, Gael FORGET4, Jean-Michel CAMPIN4, Chris HILL4, Dimitris MENEMENLIS5, Patrick HEIMBACH6

1University of Maryland, United States, 2NASA / GMAO, United States, 3Science Systems and Applications, Inc., 4Massachusetts Institute of Technology, United States, 5Jet Propulsion Laboratory, California Institute of Technology, United States, 6University of Texas at Austin, United States
Overall motivation of the research program

- Couple GEOS atmospheric model and MITgcm ocean model.
- Perform ocean analysis using the MITgcm 4D-var data assimilation capability.
- Develop a prototype ocean-ice-atmosphere weakly coupled data assimilation system by exploiting and leveraging GEOS and MITgcm data assimilation capabilities.

Applications

- Recent sea ice and ice sheet changes.
- Sub-seasonal to decadal climate predictions.
- Mesoscale air-sea interactions.
- Observation System Simulation Experiments (OSSEs).
Current state of project

- GEOS-MIT model is now running with overall realistic results.
- Issues:
 - Too much net heat flux to the ocean (cloud forcing).
 - “The double ITCZ problem”
 - Too much accumulation of sea-ice in some regions (e.g. the Beaufort Sea).
- Tuning is about to commence using Green’s function method (Menemenlis et al., 2005).
Air sea interactions in the high resolution GEOS-MIT
Current objectives of this study

• Develop a high resolution coupled ocean-atmosphere run for studying air sea interactions and simulating an observation system.
• Investigate the ability of the coupled model to capture the strong observed positive correlations between SST and wind stress/speed.
• Compare near-surface diagnostics of the fully coupled ocean-atmosphere set-up to equivalent atmosphere-only simulations.
Background: observed SST/wind stress anomaly correlations

Satellite observations have revealed a remarkably strong positive correlation between sea surface temperature (SST) and surface winds on oceanic mesoscales of 10–1000 km.”

Chelton et al., Oceanography (2010)

… correlation between SST and surface wind stress, is realistically captured only when the ocean component is eddy resolving.”

Methods - models

- **Atmosphere – GEOS:**
 - Horizontal grid type – Cubed sphere, 1/8° X1/8°
 - Vertical grid type – hybrid sigma-pressure, 72 levels
- **Ocean – MITgcm**
 - Horizontal grid type – Lat-Lon-Cap, 1/12° X1/12°
 - Vertical grid type – z* rescaled height vertical coordinate, 90 levels

Cubed sphere grid (left) and Lat-Lon-Cap (right)
Methods - experimental setup

1) Atmosphere Only – GEOS (AGCM)
 - Feb, 9 – Apr 9, 2012
 - Forcing: SST and ice fraction from an equivalent ocean-only experiment
 - Initial conditions: MERRA-2

2) Coupled – GEOS-MITgcm (AOGCM)
 - Feb, 9 – Apr 9, 2012
 - Ocean initial conditions: from an equivalent ocean-only experiment
 - Atmospheric initial conditions: MERRA-2 (same as the run 1)
Ocean surface current
Lagged correlation between daily SST $\left(\frac{\Delta \text{SST}}{\Delta t} \right)$ and wind speed $\left(\frac{\Delta \text{WS}}{\Delta t} \right)$

GEOS-MITgcm

lag=-1 mean=-0.235507

lag=0 mean=-0.221479

lag=1 mean=0.163931

lag=2 mean=0.113958
Correlation between daily SST \(\frac{\Delta \text{SST}}{\Delta t} \) and wind speed \(\frac{\Delta \text{WS}}{\Delta t} \)
Possible mechanism

Positive SST anomaly
- Reduce upward latent and sensible heat flux
- Increase instability and draw horizontal momentum from upper levels

Negative SST anomaly
- Increase upward latent and sensible heat fluxes

Negative wind anomaly
- Increase stability

Positive wind anomaly
Conclusions

• First analysis of the ~10km coupled GEOS-MITgcm model reproduces realistic synoptic and mesoscale patterns.

• The coupled model shows positive correlations between SST and wind speed/stress, and the relation is slightly closer to observational estimates compared to previous simulations.

• The fact that the atmosphere-only experiment can reproduce the positive correlation suggests that the atmosphere responds to the ocean.

• Daily time series suggest a three-four-day cycle induced by air-sea feedbacks.
Next steps/future work

- Model tuning using green’s function method.
- Increasing horizontal resolution (~1km).
- Recent sea ice and ice sheet changes.
- Initialized sub-seasonal to decadal prediction system.
- Observation System Simulation Experiments (OSSE).
Computational Issues – Doubling the Resolution

1/16°X1/16° Atmosphere, 1/24°X1/24° ocean:

- Initialize/finalize - ~2 hours to initialize, ~1 hour finalize
- Node memory – using only 20 out of CPUs per 128GB node
- Pre/post processing (1 3D field ~21GB, ~0.5TB for restart file)
- Time stepping: ~1 time step per 15 sec
- SYNCIO/IOSERVER: parallel I/O