Systems and methods in accordance with embodiments of the invention operate to structurally interrelate two components using inserts made from metallic glass-based materials. In one embodiment, a method of structurally interrelating two components includes: forming an insert from a metallic glass-based composition; where the formed insert includes a metallic glass-based material; affixing the insert to a first component; and structurally interrelating the second component to the first component using the insert.

14 Claims, 8 Drawing Sheets
References Cited

FOREIGN PATENT DOCUMENTS

WO 2015042437 A1 3/2015
WO 2015156797 A1 10/2015

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

Duan et al., “Tribological properties of Zr_{56}Ti_{14}Nb_{5}Cu_{7}Ni_{6}Be_{12} bulk metallic glasses under different conditions”, Journal of Alloys and Compounds, Mar. 2, 2012, 528, pp. 74-78.

Hu et al., “Crystallization Kinetics of the Cu_{47.5}Zr_{74.5}Al_{5} Bulk Metallic Glass under Continuous and Iso-thermal heating”, App. Mech. and Materials, vol. 59, 2010, pp. 1052-1058.

Huang et al., “Dendritic microstructure in the metallic glass matrix composite Zr_{56}Ti_{14}Nb_{5}Cu_{7}Ni_{6}Be_{12}”, Scripta Materialia, Mar. 29, 2005, vol. 53, pp. 93-97.

Inoue et al., “Preparation of 16 mm diameter Rod of Amorphous Zr_{65}Al_{5}Ni_{25}Cu_{10} Alloy”, Material Transactions, JIM, 1993, vol. 34, No. 12, pp. 1234-1237.

Kim et al., “Production of Ni_{42.5}Cr_{17.5}P_{17.5}B_{28} Metal-Glass-Coated Bipolar Plate for Fuel Cell by High Velocity Oxy-Fuel (HVOF) Spray Coating Method”, The Japan Institute of Metals, Materials Transactions, Aug. 25, 2010, vol. 51, No. 9, pp. 1609-1613.

OTHER PUBLICATIONS

* cited by examiner
FIG. 1
Forming a MG-based insert from a MG-based composition using a casting technique or other thermoplastic forming technique

Affixing the insert to a first component

Structurally aligning a second component to the first component using the insert

End

FIG. 2
Systems and methods for structurally interrelating components using inserts made from metallic glass-based materials

CROSS-REFERENCE TO RELATED APPLICATIONS

The current application claims priority to U.S. Provisional Application No. 62/131,467, filed Mar. 11, 2015, the disclosure of which is incorporated herein by reference.

STATEMENT OF FEDERAL FUNDING

The invention described herein was made in the performance of work under a NASA contract NNN12AA01C and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.

FIELD OF THE INVENTION

The present invention generally relates to structurally interrelating components using inserts fabricated from metallic glass-based materials.

BACKGROUND

The manufacture of a variety of engineered structures typically relies on fastening, or otherwise structurally interrelating, a plurality of components (e.g. in the form of sheet metal). In many instances, conventionally engineered structures are assembled from components made from heritage engineering materials, e.g. steel, aluminum, titanium, etc. Such materials are advantageous in a number of respects, e.g. they are characterized by the requisite toughness for a host of engineering applications. Moreover, such heritage engineering materials can be readily amenable to being adjoined to other engineering materials. For example, threaded holes (which can accommodate screws/bolts) can be practicably machined into steel-based components.

Many modern structures rely on the implementation of composite materials that may not be as easily machinable as heritage engineering materials. For example, carbon fiber composites typically cannot be easily threaded. Accordingly, in many instances, to allow carbon fiber composite materials to be adjoined to other components, threaded inserts are embedded within carbon fiber composite materials that can more easily enable them to be adjoined to other components. For instance, holes can be drilled out of a carbon composite material, and threaded inserts that define threaded holes typically machined from heritage engineering materials (e.g. steel, aluminum, titanium) can be epoxy bonded within the holes drilled in the carbon composite material. The embedded threaded inserts can thereby enable another component (e.g. sheet metal made from steel) to be fastened to the carbon fiber composite.

SUMMARY OF THE INVENTION

Systems and methods in accordance with embodiments of the invention operate to structurally interrelate two components using inserts made from metallic glass-based materials. In one embodiment, a method of structurally interrelating two components includes: forming an insert from a metallic glass-based composition; affixing the insert to a first component; and structurally interrelating the second component to the first component using the insert.

In another embodiment, forming an insert from a metallic glass-based composition includes using one of: a thermoplastic forming technique; and a casting technique.

In yet another embodiment, the formed insert includes a textured outer surface.

In still another embodiment, the formed insert is a threaded insert.

In still yet another embodiment, the formed insert includes extensions that are configured to deploy as the insert is engaged by a screw.

In a further embodiment, the formed insert includes an eye-hook structure.

In a yet further embodiment, the formed insert conforms to one of a cup-shaped geometry and a cone-shaped geometry.

In a still further embodiment, the metallic glass-based composition is based on one of: Ti, Zr, Cu, Ni, Fe, Pd, Pt, Ag, Au, Al, Hf, W, Ti—Zr—Be, Cu—Zr, Zr—Be, Ti—Cu, Zr—Cu—Ni—Al, Ti—Zr—Cu—Be, and combinations thereof.

In a still yet further embodiment, the metallic glass-based composition is based on titanium.

In another embodiment, affixing the formed insert to a first component includes epoxy bonding the formed insert to the first component.

In still another embodiment, affixing the formed insert to a first component includes press fitting the formed insert in to the first component.

In yet another embodiment, the formed insert is a threaded insert such that when it is engaged by a screw, it expands laterally and thereby better adheres to the first component.

In still yet another embodiment, the first component is a carbon composite material.

In a further embodiment, the metallic glass-based material is a titanium-based metallic glass-based material.

In a still further embodiment, the formed insert is a threaded insert, and structurally interrelating the second component to the first component includes fastening the second component to the first component using a screw and the threaded insert.

In a yet further embodiment, structurally interrelating the second component to the first component includes structurally aligning the second component to the first component.

In a still yet further embodiment, an insert configured to structurally interrelate two components includes a metallic glass-based material.

In another embodiment, the insert is a threaded insert.

In yet another embodiment, the insert includes an eye-hook structure.

In still another embodiment, the insert includes a titanium-based metallic glass-based material.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a bolt cast from a MG-based material, demonstrating that MG-based materials can be cast into shapes that include intricate features such as threads in accordance with certain embodiments of the invention.

FIG. 2 illustrates a process for structurally interrelating two components using an insert fabricated from a MG-based material in accordance with certain embodiments of the invention.

FIGS. 3A-3C illustrate casting a MG-based material to create a threaded insert in accordance with certain embodiments of the invention.
FIGS. 4A-4I illustrate a variety of insert geometries that can be fabricated in accordance with certain embodiments of the invention.

FIGS. 5A-5C illustrate a threaded insert including extensions fabricated from a MG-based material in accordance with certain embodiments of the invention.

FIGS. 6A-6D illustrate how the elastic properties of a MG-based material can be harnessed to better adhere a respective insert to a component in accordance with certain embodiments of the invention.

FIGS. 7A-7D schematically depict a process for structurally interrelating two components using an insert fabricated from a MG-based material in accordance with certain embodiments of the invention.

FIGS. 8A-8B illustrate an insert that was fabricated from conventional steel relative to an insert fabricated from a MG-based material in accordance with certain embodiments of the invention.

DETAILED DESCRIPTION

Turning now to the drawings, systems and methods for structurally interrelating two components using inserts made from metallic glass-based materials are illustrated. In many embodiments, threaded inserts that include metallic glass-based materials are embedded within at least a first component to be adjoined to a second component; the threaded insert is then utilized in the adjoining of the at least two components. In a number of instances, cup and cone-shaped inserts that include metallic glass-based materials are embedded within first and second components, and the cup and cone-shaped inserts are used to structurally align the first and second components.

Metallic glasses, also known as amorphous alloys, embody a relatively new class of materials that is receiving much interest from the engineering and design communities. Metallic glasses are characterized by their disordered atomic-scale structure in spite of their metallic constituent elements—i.e., whereas conventional metallic materials typically possess a highly ordered atomic structure, metallic glass materials are characterized by their disordered atomic structure. Notably, metallic glasses typically possess a number of useful material properties that can allow them to be implemented as highly effective engineering materials. For example, metallic glasses are generally much harder than conventional metals, and are generally tougher than ceramic materials. They are also relatively corrosion resistant, and, unlike conventional glass, they can have good electrical conductivity. Importantly, metallic glass materials lend themselves to relatively easy processing in certain respects. For example, the forming of metallic glass materials can be compatible with injection molding processes. Thus, for example, metallic glass compositions can be cast into desired shapes.

Nonetheless, the practical implementation of metallic glasses presents certain challenges that limit their viability as engineering materials. In particular, metallic glasses are typically formed by raising a metallic alloy above its melting temperature, and rapidly cooling the melt to solidify it in a way such that its crystallization is avoided, thereby forming the metallic glass. The first metallic glasses required extraordinary cooling rates, e.g., on the order of 10^8 K/s, and were thereby limited in the thickness with which they could be formed. Indeed, because of this limitation in thickness, metallic glasses were initially limited to applications that involved coatings. Since then, however, particular alloy compositions that are more resistant to crystallization have been developed, which can thereby form metallic glasses at much lower cooling rates, and can therefore be made to be much thicker (e.g., greater than 1 mm). These metallic glass compositions that can be made to be thicker are known as “bulk metallic glasses” (“BMGs”). As can be appreciated, such BMGs can be better suited for investment molding operations.

In addition to the development of BMGs, ‘bulk metallic glass matrix composites’ (BMGMCs) have also been developed. BMGMCs are characterized in that they possess the amorphous structure of BMGs, but they also include crystalline phases of material within the matrix of amorphous structure. For example, the crystalline phases can exist in the form of dendrites. The crystalline phase inclusions can impart a host of favorable materials properties on the bulk material. For example, the crystalline phases can allow the material to have enhanced ductility, compared to where the material is entirely constituted of the amorphous structure. BMGs and BMGMCs can be referred to collectively as BMG-based materials. Similarly, metallic glasses, metallic glasses that include crystalline phase inclusions, BMGs, and BMGMCs can be referred to collectively as metallic glass-based materials or MG-based materials.

The potential of metallic glass-based materials continues to be explored, and developments continue to emerge. For example, in U.S. patent application Ser. No. 13/928,109, D. Hofmann et al. disclose the implementation of metallic glass-based materials in macroscale gears. The disclosure of U.S. patent application Ser. No. 13/928,109 is hereby incorporated by reference in its entirety, especially as it pertains to metallic glass-based materials, and their implementation in macroscale gears. Likewise, in U.S. patent application Ser. No. 13/942,932, D. Hofmann et al. disclose the implementation of metallic glass-based materials in macroscale compliant mechanisms. The disclosure of U.S. patent application Ser. No. 13/942,932 is hereby incorporated by reference in its entirety, especially as it pertains to metallic glass-based materials, and their implementation in macroscale compliant mechanisms. Moreover, in U.S. patent application Ser. No. 14/060,478, D. Hofmann et al. disclose techniques for depositing layers of metallic glass-based materials to form objects. The disclosure of U.S. patent application Ser. No. 14/060,478 is hereby incorporated by reference especially as it pertains to metallic glass-based materials, and techniques for depositing them to form objects. Furthermore, in U.S. patent application Ser. No. 14/163,936, D. Hofmann et al., disclose techniques for additively manufacturing objects so that they include metallic glass-based materials. The disclosure of U.S. patent application Ser. No. 14/163,936 is hereby incorporated by reference in its entirety; especially as it pertains to metallic glass-based materials, and techniques for manufacturing objects so that they include metallic glass-based materials. Additionally, in U.S. patent application Ser. No. 14/177,608, D. Hofmann et al. disclose techniques for fabricating strain wave gears using metallic glass-based materials. The disclosure of U.S. patent application Ser. No. 14/177,608 is hereby incorporated by reference in its entirety, especially as it pertains to metallic glass-based materials, and their implementation in strain wave gears. Moreover, in U.S. patent application Ser. No. 14/178,098, D. Hofmann et al., disclose selectively developing equilibrium inclusions within an object constituted from a metallic glass-based material. The disclosure of U.S. patent application Ser. No. 14/178,098 is hereby incorporated by reference, especially as it pertains to metallic glass-based materials, and the tailored development of equi-

Notwithstanding all of these developments, the vast potential of metallic glass-based materials has yet to be fully appreciated. For instance, the fabrication of inserts that can be used to facilitate the structural interrelationship between two components from metallic glass-based materials has yet to be fully explored. Such inserts have typically been fabricated from conventional engineering materials such as steel, aluminum, and/or titanium. This is in part due to the conventional desire to not have two dissimilar metals in intimate contact with each other—i.e., a screw and the respective threaded insert each including dissimilar metals—for fear of the effects of galvanic corrosion. However, MG-based materials can be made to be relatively averse to the effects of galvanic corrosion, and can also be made to develop a robust oxide layer that can further inhibit occurrences of galvanic corrosion. In other words, MG-based materials can be made to practically operate in intimate contact with dissimilar metals. Whereas such inserts have typically been fabricated from conventional engineering materials (e.g., steel, aluminum, or titanium), they can substantially benefit from the materials properties that many MG-based materials can offer. For instance, inserts made from MG-based materials can have a relatively higher elastic strain limit, better resistance to wear, higher hardness, lower density, better corrosion resistance, and/or better resilience to extreme environments relative to conventionally fabricated inserts. Additionally, MG-based materials can be further advantageous insofar as their inherent mechanical properties can be tunable via alloying. Moreover, MG-based materials are amenable to casting and other thermoplastic forming processes, which can greatly enhance manufacturing efficiency. By contrast, casting processes are not conventionally used in the fabrication of inserts from heritage engineering materials for a number of reasons. For example, the most appropriate conventional materials for casting techniques are softer materials, which typically are not wear resistant and thereby not best-suited for, e.g., threaded insert applications where screws may be wearing on the respective insert. Methods for structurally interrelating two components using inserts that include MG-based materials in accordance with many embodiments of the invention are now discussed below.

Methods for Structurally Interrelating Two Components Using Inserts Fabricated from MG-Based Materials

In many embodiments of the invention, two components are structurally interrelated using inserts fabricated from MG-based materials. While conventional inserts fabricated from heritage engineering materials have been effective in many respects, fabricating these inserts from MG-based materials can offer a host of previously unrealized advantages. As alluded to above, MG-based materials can offer unique materials profiles that can be advantageous such inserts. Moreover, MG-based materials are amenable to casting and other thermoplastic forming processes, which can allow for the efficient—and bulk—manufacture of even intricate geometries. For example, FIG. 1 illustrates a screw—including threads—that was entirely cast from a MG-based material; FIG. 1 demonstrates that MG-based materials can be cast into intricate geometric shapes. This level of castability can be harnessed in the creating inserts from metallic glass-based materials.

FIG. 2 illustrates a process for structurally interrelating two components in accordance with certain embodiments of the invention. In particular, the method 200 includes forming 210 an insert from a MG-based composition using a casting technique or other thermoplastic forming technique. Any suitable thermoplastic or casting technique can be implemented in accordance with embodiments of the invention. For example, FIGS. 3A-3C schematically illustrate casting a MG-based material to create a threaded insert in accordance with many embodiments of the invention. In particular, FIG. 3A illustrates a MG-based composition in relation to a mold in the shape of a screw; FIG. 3B illustrates casting the MG-based melt around the mold so as to form a MG-based material; and FIG. 3C illustrates removing the cast threaded insert from the plug. In many instances, the forming 210 additionally includes other manufacturing procedures, such as machining. For instance, the forming 210 can include roughening the outer surface of the insert via any of a variety of texturfizing techniques.

Note that any suitable MG-based material can be incorporated in accordance with embodiments of the invention; embodiments of the invention are not limited to particular compositions. For example, in many instances, the alloy composition is a composition that is based on one of: Ti, Zr, Cu, Ni, Fe, Pd, Pt, Ag, Au, Al, Hf, W, Ti—Zr—Be, Cu—Zr, Zr—Be, Ti—Cu, Zr—Cu—Ni—Al, Ti—Zr—Cu—Be, and combinations thereof. In the instant context, the term ‘based on’ can be understood to mean that the specified element(s) are present in the greatest amount relative to any other present elements. Additionally, within the context of the instant application, the term “MG-based composition” can be understood reference an element, or aggregation of elements, that are capable of forming a metallic glass-based material (e.g., via being exposed to a sufficiently rapid, but viable, cooling rate). While several examples of suitable metallic glass-based materials are listed above, it should be reiterated that any suitable metallic glass-based composition
can be incorporated in accordance with embodiments of the invention; for example, any of the metallic glass-based compositions listed in the disclosures cited and incorporated by reference above can be implemented. In many instances, the particular MG-based composition to be cast is based on an assessment of the anticipated operating environment for materials, and can thereby be well-suited for space applications. In particular, titanium-based MG-based inserts can offer high hardness at a relatively low density. In many instances, the selection of the MG-based material for use in conjunction with carbon composite materials is generally characterized by relatively low coefficients of thermal expansion. In this way, when the insert is affixed to the carbon composite, the stresses between the insert and the carbon composite (e.g. in the epoxy bonding) can be reduced. Note also that both titanium-based MG-based materials and carbon composites are relatively light weight materials, and can thereby be well-suited for space applications. In particular, titanium-based MG-based inserts can offer high hardness at a relatively low density.

In many instances, the selection of the MG-based material to be implemented is based on the desire for one of: environmental resilience, toughness, wear resistance, hardness, density, machinability, and combinations thereof. For reference, Tables 1-6 list materials data that can be relied on in selecting a metallic glass-based composition to be implemented.

TABLE 1

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (g/cc)</th>
<th>Stiffness, E (GPa)</th>
<th>Tensile Yield (MPa)</th>
<th>Tensile UTS (MPa)</th>
<th>Elastic Limit (%)</th>
<th>Specific Strength (HRC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 15500</td>
<td>7.8</td>
<td>200</td>
<td>1140</td>
<td>1170</td>
<td><1</td>
<td>146</td>
</tr>
<tr>
<td>H1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Ti-6Al-4V STA</td>
<td>4.4</td>
<td>114</td>
<td>965</td>
<td>1035</td>
<td><1</td>
<td>219</td>
</tr>
<tr>
<td>STA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Ti-6Al-6V-4Sn STA</td>
<td>4.5</td>
<td>112</td>
<td>1035</td>
<td>1100</td>
<td><1</td>
<td>230</td>
</tr>
<tr>
<td>STA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Nitronic 60 CW</td>
<td>7.6</td>
<td>179</td>
<td>1241</td>
<td>1379</td>
<td><1</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Vancomax C300</td>
<td>8.0</td>
<td>190</td>
<td>1897</td>
<td>1966</td>
<td><1</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Zr-BMG</td>
<td>6.1</td>
<td>97</td>
<td>1737</td>
<td>1737</td>
<td>>1.8</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Ti-BMGMC</td>
<td>5.2</td>
<td>94</td>
<td>1362</td>
<td>1429</td>
<td>>1.4</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Zr-BMGMC</td>
<td>5.8</td>
<td>75</td>
<td>1096</td>
<td>1210</td>
<td>>1.4</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Atomic %</th>
<th>Weight %</th>
<th>BMG</th>
<th>bcc</th>
<th>p</th>
<th>σy</th>
<th>σut</th>
<th>Elastic Limit</th>
<th>E</th>
<th>Tg</th>
<th>Tm (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV2</td>
<td>Ti47Zr28V12Cu13Be19</td>
<td>Ti442Zr32V11Cu9Be6</td>
<td>70</td>
<td>30</td>
<td>5.13</td>
<td>1597</td>
<td>1614</td>
<td>2.1</td>
<td>94.5</td>
<td>956</td>
<td></td>
</tr>
<tr>
<td>DV1</td>
<td>Ti47Zr28V12Cu13Be15</td>
<td>Ti442Zr32V11Cu9Be6</td>
<td>55</td>
<td>47</td>
<td>5.15</td>
<td>1362</td>
<td>1429</td>
<td>2.3</td>
<td>94.2</td>
<td>955</td>
<td></td>
</tr>
<tr>
<td>DV3</td>
<td>Ti44Zr32V9Cu14Be12</td>
<td>Ti67Zr30V9Cu14Be16</td>
<td>46</td>
<td>54</td>
<td>5.08</td>
<td>1308</td>
<td>1309</td>
<td>2.2</td>
<td>84.0</td>
<td>951</td>
<td></td>
</tr>
<tr>
<td>DV4</td>
<td>Ti47Zr32V9Cu14Be9</td>
<td>Ti67Zr30V9Cu14Be16</td>
<td>40</td>
<td>60</td>
<td>5.03</td>
<td>1086</td>
<td>1089</td>
<td>2.1</td>
<td>83.7</td>
<td>940</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Alloy</th>
<th>σut (MPa)</th>
<th>εut (%)</th>
<th>σy (MPa)</th>
<th>εy (%)</th>
<th>E (GPa)</th>
<th>p (GPa)</th>
<th>G (GPa)</th>
<th>C1 (J)</th>
<th>RoA (%)</th>
<th>µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr26.6Ti33.0Nb4Cu18Be10 (D11)</td>
<td>1512</td>
<td>9.58</td>
<td>1474</td>
<td>1.08</td>
<td>84.1</td>
<td>5.6</td>
<td>50.7</td>
<td>26</td>
<td>44</td>
<td>0.371</td>
</tr>
<tr>
<td>Zr28.2Ti32.8Nb4Cu18Be10 (D12)</td>
<td>1411</td>
<td>10.8</td>
<td>1367</td>
<td>1.92</td>
<td>79.2</td>
<td>5.7</td>
<td>28.8</td>
<td>40</td>
<td>50</td>
<td>0.373</td>
</tr>
<tr>
<td>Zr26.6Ti33.0Nb4Cu18Be10 (D13)</td>
<td>1210</td>
<td>13.1</td>
<td>1096</td>
<td>1.62</td>
<td>75.3</td>
<td>5.8</td>
<td>27.3</td>
<td>45</td>
<td>46</td>
<td>0.376</td>
</tr>
<tr>
<td>Zr26.6Ti33.0Nb4Cu18Be10 (D14)</td>
<td>1737</td>
<td>1.98</td>
<td>—</td>
<td>—</td>
<td>97.2</td>
<td>6.1</td>
<td>35.9</td>
<td>8</td>
<td>0</td>
<td>0.355</td>
</tr>
<tr>
<td>Zr26.6Ti33.0Nb4Cu18Be10 (D15)</td>
<td>1302</td>
<td>5.49</td>
<td>1046</td>
<td>1.48</td>
<td>78.8</td>
<td>6.2</td>
<td>28.6</td>
<td>24</td>
<td>22</td>
<td>0.375</td>
</tr>
</tbody>
</table>
Table 4

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition</th>
<th>Hv</th>
<th>E (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CuZr42Al17Be10)Nb3</td>
<td>A</td>
<td>626.5</td>
<td>108.5</td>
</tr>
<tr>
<td>(CuZr46Al5Y2)Nb3</td>
<td>X</td>
<td>407.4</td>
<td>76.9</td>
</tr>
<tr>
<td>(CuZrAl7Be5)Nb3</td>
<td>C</td>
<td>544.4</td>
<td>97.8</td>
</tr>
<tr>
<td>Cu47Zr41Al7Be7Cr3</td>
<td>A</td>
<td>604.3</td>
<td>107.2</td>
</tr>
<tr>
<td>Cu47Zr41Al7Be7Y2</td>
<td>X</td>
<td>523.9</td>
<td>102.0</td>
</tr>
<tr>
<td>Cu47Zr41Al7Be7</td>
<td>C</td>
<td>532.4</td>
<td>101.3</td>
</tr>
<tr>
<td>Cu47Zr41Al7Be7C</td>
<td>A</td>
<td>548.9</td>
<td>103.5</td>
</tr>
<tr>
<td>Cu47Zr41Al7Be7Co</td>
<td>X</td>
<td>538.9</td>
<td>105.7</td>
</tr>
<tr>
<td>Cu47Zr41Al7Be7Co</td>
<td>C</td>
<td>538.9</td>
<td>105.7</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Material</th>
<th>Fracture Geometry</th>
<th>Loading Frequency</th>
<th>R-ratio</th>
<th>Fatigue limit (MPa)</th>
<th>Fatigue ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr52Cu17Al10Ni5</td>
<td>3 x 3 x 30</td>
<td>4PB</td>
<td>25</td>
<td>0.1</td>
<td>296</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>768</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Material</th>
<th>Fracture Geometry</th>
<th>Loading Frequency</th>
<th>R-ratio</th>
<th>Fatigue limit (MPa)</th>
<th>Fatigue ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr52Cu17Al10Ni5</td>
<td>3 x 3 x 30</td>
<td>4PB</td>
<td>25</td>
<td>0.1</td>
<td>296</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>768</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
<tr>
<td>Zr41Cu12Ni10Ti13.8</td>
<td>2 x 2 x 60</td>
<td>3PB</td>
<td>10</td>
<td>0.1</td>
<td>359</td>
</tr>
</tbody>
</table>

Note: The tables provide material properties, fatigue characteristics, and other properties as a function of composition and structure. Each table includes specific compositions and their corresponding mechanical properties. The tables also outline fracture geometries, loading frequencies, and fatigue limits, along with the respective fatigue ratios.
In a number of embodiments, the operation of a mechanical rough-textured surfaces can be incorporated in accordance with a lock (e.g., the extensions depicted in FIGS. 5A-5C) is relied on to allow the insert to better adhere to the component. Any suitable technique can be used to affix the insert to the component. While several examples of affixing an insert to a component are discussed, it should be clear that any suitable way of affixing the insert to a first component can be implemented in accordance with embodiments of the invention.

Note that the component that the insert is affixed to can be any suitable component in accordance with embodiments of the invention. In many embodiments, the component is in the form of a sheet (e.g., sheet metal). In numerous embodiments, the component made from a relatively modern material, such as a carbon composite material. To be clear though, the component can take any of a variety of forms in accordance with embodiments of the invention.

Returning back to FIG. 2, the method 200 further includes structurally interrelating a second component to the first component using the insert. In many embodiments, the insert is a threaded insert, a screw is used to fasten the second component to the first component using the threaded insert, and the first and second components are thereby structurally interrelated. In a number of embodiments, the insert is a cup-shaped insert designed to accommodate a cone-shaped geometry, the second component has an included cone-shaped geometry, the cup-shaped insert is used to align the first and second components, and the first and second components are thereby structurally interrelated. While several examples are given, it should be clear that the first and second components can be structurally interrelated in any suitable way in accordance with embodiments of the invention.

FIGS. 7A-7D schematically illustrates one example of a process in accordance with the method outlined in FIG. 2. In particular, FIG. 7A illustrates a first component to be structurally interrelated to a second component; in the illustrated embodiment, the first component is in the form of a sheet. As alluded to above, the component can be any suitable material in accordance with embodiments of the invention. FIG. 7B illustrates the formation of a threaded insert from a MG-based material. The insert can be formed using any suitable technique in accordance with embodiments of the invention, including any of the above-listed techniques. FIG. 7C illustrates embedding the insert within the first component. In particular, it is depicted that the insert is embedded within the first component using epoxy bonding. Of course, while epoxy bonding is depicted, the insert could have been affixed to the first component using any suitable technique in accordance with embodiments of the invention. FIG. 7D illustrates fastening a second component to the first component using a screw. As can be appreciated from the above discussion, the second component can take any of a variety of forms in accordance with embodiments of the invention. For example, it can conform to any of a variety of suitable geometries, and it can be made from any of a variety of suitable materials. While a certain process has been schematically illustrated in FIGS. 7A-7D, it should be clear that the process described with respect to FIG. 3 can be implemented in any of a variety of ways in accordance with embodiments of the invention.

FIGS. 8A-8B illustrate views of a MG-based insert relative to a conventional, steel-based insert. In particular, the MG-based insert appears on the right side of FIGS. 8A and 8B. Note that the two inserts are virtually identical in...
geometry, which demonstrates the viability of fabricating inserts from MG-based materials.

In general, as can be inferred from the above discussion, the above-mentioned concepts can be implemented in a variety of arrangements in accordance with embodiments of the invention. For example, while the process listed in FIG. 3 recites forming an insert using either a thermoplastic forming technique or a casting technique, in many embodiments, the insert is formed without using one of those techniques. Any suitable manufacturing technique can be used to form an insert from a metallic glass-based material in accordance with embodiments of the invention. Accordingly, although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

What claimed is:

1. A method of structurally interrelating two components comprising:
 - forming an insert from a metallic glass-based composition;
 - wherein the formed insert comprises a metallic glass-based material having an elastic limit of at least 1.4%;
 - affixing the insert to a first component by press fitting the insert into the first component and engaging the insert with a second component, such that the engagement elastically deforms and laterally expands the insert to adhere to the first component; and
 - structurally interrelating the second component to the first component using the insert.

2. The method of claim 1, wherein forming an insert from a metallic glass-based composition comprises using one of: a thermoplastic forming technique; and a casting technique.

3. The method of claim 1, wherein the formed insert includes a textured outer surface.

4. The method of claim 1, wherein the formed insert is a threaded insert.

5. The method of claim 4, wherein the formed insert includes extensions that are configured to deploy as the insert is engaged by a screw.

6. The method of claim 1, wherein the formed insert includes an eye-hook structure.

7. The method of claim 1, wherein the formed insert conforms to one of a cup-shaped geometry and a cone-shaped geometry.

8. The method of claim 1, wherein the metallic glass-based composition is based on one of: Ti, Zr, Cu, Ni, Fe, Pd, Pt, Ag, Au, Al, Hf, W, Ti—Zr—Be, Cu—Zr, Zr—Be, Ti—Cu, Zr—Cu—Ni—Al, Ti—Zr—Cu—Be, and combinations thereof.

9. The method of claim 8, wherein the metallic glass-based composition is based on titanium.

10. The method of claim 1, wherein affixing the insert to the first component further comprises epoxy bonding the insert to the first component.

11. The method of claim 1, wherein the first component is a carbon composite material.

12. The method of claim 11, wherein the metallic glass-based material is a titanium-based metallic glass-based material.

13. The method of claim 1, wherein:
 - the formed insert is a threaded insert; and
 - structurally interrelating the second component to the first component comprises fastening the second component to the first component using a screw and the threaded insert.

14. The method of claim 1, wherein structurally interrelating the second component to the first component comprises structurally aligning the second component to the first component.