ASTM G86
Energy vs. Momentum

Steven A. Mathe, NASA White Sands Test Facility, Laboratories Department
Stephen F. Peralta, NASA White Sands Test Facility, Laboratories Office
ASTM G86 Is Broad

- Covers Ambient and Pressurized testers
- Ambient tester more controlled
 - Specified striker pin design
 - Minimum base requirements
- Pressurized system only has examples
Measuring Impacts

- Standard measuring stick are dent blocks, minimum slope
- Configurational differences result in different impacts (NASA-TM-74106)
- Compensate for losses by adding potential energy
Energy vs. Momentum

\[E = mgh \]
\[p = mv = m\sqrt{2gh} \]

\[mgh = \frac{1}{2}mv^2 \]
\[v = \sqrt{2gh} \]

\[v = gt \]
\[h = \frac{1}{2}gt^2 \]
\[t = \sqrt{\frac{2h}{g}} \]
\[v = g \sqrt{\frac{2h}{g}} = \sqrt{2gh} \]
Energy vs. Momentum

Mass = 2m, Height = h
- \(E = (2m)gh = 2mgh \)
- \(p = (2m)\sqrt{2gh} \)

Mass = m, Height = 2h
- \(E = mg(2h) = 2mgh \)
- \(p = m\sqrt{2g(2h)} = 2m\sqrt{gh} \)

- Same \(E \), \(\sqrt{2} \) more \(p \)
Approach

- Impacts at various Energy/Momentum combinations
- Two dent block materials
 - 304 Stainless Steel
 - 110 Copper
- Instrumented plummet to collect other impact data
Approach

Momentum (kg-m/s) vs. Energy (J)
Approach

Momentum (kg-m/s)

Energy (J)

NASA White Sands Test Facility

NASA Johnson Space Center
Results

Penetration Function (mm^2) vs. Measured Impact Energy (J)

Different materials and their linear functions are shown:
- 15-Cu
- 78-Cu
- 15-SS
- 78-SS

The graph illustrates the linear relationship between penetration function and impact energy for each material.
Results

![Graph showing penetration depth vs. measured impact momentum for different materials: 15-Cu, 78-Cu, 15-SS, 78-SS. The graph includes linear fits for each material.](image-url)
Results

<table>
<thead>
<tr>
<th>Energy (J)</th>
<th>Momentum (kg-m/s)</th>
<th>Mass (kg)</th>
<th>Drop Height (m)</th>
<th>Material</th>
<th>Peak Load (N)</th>
<th>Impact Velocity (m/s)</th>
<th>Impact Duration (ms)</th>
<th>Impact Energy (J)</th>
<th>Impact Momentum (kg-m/s)</th>
<th>Average Power (kW)</th>
<th>Impulse (kg-m/s)</th>
<th>Dent Diameter (mm)</th>
<th>Penetration Depth (mm)</th>
<th>Penetration Function (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.8</td>
<td>30.3</td>
<td>6.78</td>
<td>1.02</td>
<td>Cu</td>
<td>40417</td>
<td>4.42</td>
<td>1.25</td>
<td>65.93</td>
<td>29.96</td>
<td>52.7</td>
<td>32.4</td>
<td>8.4023</td>
<td>1.0350</td>
<td>2.5230</td>
</tr>
<tr>
<td>67.8</td>
<td>69.6</td>
<td>35.67</td>
<td>0.194</td>
<td>Cu</td>
<td>41593</td>
<td>1.93</td>
<td>3.09</td>
<td>66.35</td>
<td>68.84</td>
<td>21.5</td>
<td>77.9</td>
<td>8.2207</td>
<td>1.0918</td>
<td>2.2797</td>
</tr>
<tr>
<td>40.7</td>
<td>23.5</td>
<td>6.78</td>
<td>0.612</td>
<td>SS</td>
<td>56117</td>
<td>3.41</td>
<td>0.96</td>
<td>36.47</td>
<td>23.14</td>
<td>38.0</td>
<td>29.7</td>
<td>5.6312</td>
<td>1.8196</td>
<td>0.4338</td>
</tr>
<tr>
<td>40.7</td>
<td>53.9</td>
<td>35.67</td>
<td>0.116</td>
<td>SS</td>
<td>50603</td>
<td>1.49</td>
<td>2.50</td>
<td>37.94</td>
<td>53.12</td>
<td>15.2</td>
<td>65.9</td>
<td>5.3579</td>
<td>1.8071</td>
<td>0.3516</td>
</tr>
<tr>
<td>67.8</td>
<td>30.3</td>
<td>6.78</td>
<td>1.02</td>
<td>SS</td>
<td>72614</td>
<td>4.45</td>
<td>0.95</td>
<td>62.67</td>
<td>30.19</td>
<td>66.0</td>
<td>38.1</td>
<td>6.3614</td>
<td>1.8065</td>
<td>0.7295</td>
</tr>
<tr>
<td>67.8</td>
<td>69.6</td>
<td>35.67</td>
<td>0.194</td>
<td>SS</td>
<td>65071</td>
<td>1.92</td>
<td>2.45</td>
<td>63.30</td>
<td>68.55</td>
<td>25.8</td>
<td>84.3</td>
<td>6.0185</td>
<td>0.3705</td>
<td>0.5752</td>
</tr>
<tr>
<td>Energy (J)</td>
<td>Momentum (kg-m/s)</td>
<td>Mass (kg)</td>
<td>Drop Height (m)</td>
<td>Material</td>
<td>Peak Load (N)</td>
<td>Impact Duration (ms)</td>
<td>Impact Energy (J)</td>
<td>P-Value</td>
<td>Impact Momentum (kg-m/s)</td>
<td>P-Value</td>
<td>Average Power (kW)</td>
<td>P-Value</td>
<td>Penetration Function (mm²)</td>
<td>P-Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>67.8</td>
<td>30.3</td>
<td>6.78</td>
<td>1.02</td>
<td>Cu</td>
<td>40417</td>
<td>1.25</td>
<td>65.93</td>
<td>0.253</td>
<td>29.96</td>
<td>---</td>
<td>52.7</td>
<td>0.0095</td>
<td>2.5230</td>
<td>0.0721</td>
</tr>
<tr>
<td>67.8</td>
<td>69.6</td>
<td>35.67</td>
<td>0.194</td>
<td>Cu</td>
<td>41593</td>
<td>3.09</td>
<td>66.35</td>
<td></td>
<td>68.84</td>
<td></td>
<td>21.5</td>
<td></td>
<td>2.2797</td>
<td></td>
</tr>
<tr>
<td>40.7</td>
<td>23.5</td>
<td>6.78</td>
<td>0.612</td>
<td>SS</td>
<td>56117</td>
<td>0.96</td>
<td>36.47</td>
<td>0.022</td>
<td>23.14</td>
<td>6.04e-12</td>
<td>38.0</td>
<td>2.33e-7</td>
<td>0.4338</td>
<td>0.0012</td>
</tr>
<tr>
<td>40.7</td>
<td>53.9</td>
<td>35.67</td>
<td>0.116</td>
<td>SS</td>
<td>50603</td>
<td>2.50</td>
<td>37.94</td>
<td></td>
<td>53.12</td>
<td>1.29e-8</td>
<td>66.0</td>
<td>5.96e-7</td>
<td>0.7295</td>
<td>0.0008</td>
</tr>
<tr>
<td>67.8</td>
<td>30.3</td>
<td>6.78</td>
<td>1.02</td>
<td>SS</td>
<td>72614</td>
<td>0.95</td>
<td>62.67</td>
<td>0.486</td>
<td>30.19</td>
<td>1.29e-8</td>
<td>66.0</td>
<td>5.96e-7</td>
<td>0.5752</td>
<td></td>
</tr>
<tr>
<td>67.8</td>
<td>69.6</td>
<td>35.67</td>
<td>0.194</td>
<td>SS</td>
<td>65071</td>
<td>2.45</td>
<td>63.30</td>
<td></td>
<td>68.55</td>
<td></td>
<td>25.8</td>
<td></td>
<td>0.5752</td>
<td></td>
</tr>
</tbody>
</table>
Results

Penetration Function (mm²) vs. Nominal Impact Energy (J)

- 5-Cu
- 20-Cu
- 5-SS
- 20-SS

- Linear (5-Cu)
- Linear (20-Cu)
- Linear (5-SS)
- Linear (20-SS)
Results

Penetration Depth (mm) vs. Nominal Impact Momentum (kg-m/s)

- 5-Cu
- 20-Cu
- 5-SS
- 20-SS

- Linear (5-Cu)
- Linear (20-Cu)
- Linear (5-SS)
- Linear (20-SS)
Results

<table>
<thead>
<tr>
<th>Nominal Energy (J)</th>
<th>Nominal Momentum (kg-m/s)</th>
<th>Mass (kg)</th>
<th>Material</th>
<th>Penetration Depth (mm)</th>
<th>Penetration Function (mm²)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.78</td>
<td>5.55</td>
<td>2.275</td>
<td>Cu</td>
<td>0.4682</td>
<td>0.2193</td>
<td>7.77e-6</td>
</tr>
<tr>
<td>6.78</td>
<td>11.09</td>
<td>9.068</td>
<td>Cu</td>
<td>0.5273</td>
<td>0.2782</td>
<td></td>
</tr>
<tr>
<td>27.12</td>
<td>11.11</td>
<td>2.275</td>
<td>Cu</td>
<td>0.9885</td>
<td>0.9774</td>
<td>2.31e-5</td>
</tr>
<tr>
<td>27.12</td>
<td>22.18</td>
<td>9.068</td>
<td>Cu</td>
<td>1.0783</td>
<td>1.1632</td>
<td></td>
</tr>
<tr>
<td>6.78</td>
<td>5.55</td>
<td>2.275</td>
<td>SS</td>
<td>0.2659</td>
<td>0.0707</td>
<td>2.62e-6</td>
</tr>
<tr>
<td>6.78</td>
<td>11.09</td>
<td>9.068</td>
<td>SS</td>
<td>0.3139</td>
<td>0.0986</td>
<td></td>
</tr>
<tr>
<td>27.12</td>
<td>11.11</td>
<td>2.275</td>
<td>SS</td>
<td>0.5333</td>
<td>0.2845</td>
<td>1.25e-7</td>
</tr>
<tr>
<td>27.12</td>
<td>22.18</td>
<td>9.068</td>
<td>SS</td>
<td>0.6128</td>
<td>0.3757</td>
<td></td>
</tr>
</tbody>
</table>
Discussion - Materials

<table>
<thead>
<tr>
<th>Parameter</th>
<th>304 Stainless Steel</th>
<th>110 Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>96.8 HRB</td>
<td>41.1 HRB</td>
</tr>
<tr>
<td>Dent Size</td>
<td>Smaller</td>
<td>Larger</td>
</tr>
<tr>
<td>Energy Delivery</td>
<td>Slightly Less</td>
<td>Slightly More</td>
</tr>
<tr>
<td>Power</td>
<td>More</td>
<td>Less</td>
</tr>
</tbody>
</table>
Discussion - Systems

Non-Standard Instrumented System
- Heavier weight made smaller dent
- More momentum made larger dent
- Less rigid base
- Lighter weight impact happens faster – no time for structure to flex?

Standard Ambient System
- Heavier weight made larger dent
- More momentum made larger dent
- More rigid base
- Minimal structural flexing on either time scale
Discussion – Important Parameters

- Energies matched, but clear differences in impact
 - Power
 - Impulse
- Presumably power affects reactivity
- Two-parameter (or more) problem?
Discussion – Important Parameters

- Energies matched, but clear differences in impact
 - Power
 - Impulse
- Presumably power affects reactivity
- Two-parameter (or more) problem?
Discussion – Important Parameters

- Energies matched, but clear differences in impact
 - Power
 - Impulse
- Presumably power affects reactivity
- Two-parameter (or more) problem?

![Energy vs Power Graph]

NASA Johnson Space Center
Conclusions and Future Work

- Softer dent blocks may offer increased resolution
- Comparison of different systems is extremely complicated
- Energy alone may not adequately characterize impacts
- More work needed to understand Power and Impulse
- Introduce controlled losses and attempt to compensate
- Test materials in oxygen
Results

<table>
<thead>
<tr>
<th>Energy (J)</th>
<th>Momentum (kg-m/s)</th>
<th>Mass (kg)</th>
<th>Material</th>
<th>Peak Load (N)</th>
<th>Impact Velocity (m/s)</th>
<th>Impact Duration (ms)</th>
<th>Impact Energy (J)</th>
<th>Impact Momentum (kg-m/s)</th>
<th>Dent Diameter (mm)</th>
<th>Penetration Depth (mm)</th>
<th>Penetration Function (mm²)</th>
<th>Average Power (kW)</th>
<th>Impulse (kg-m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6</td>
<td>13.6</td>
<td>6.78</td>
<td>Cu</td>
<td>22942</td>
<td>1.97</td>
<td>1.23</td>
<td>12.74</td>
<td>13.35</td>
<td>5.6515</td>
<td>0.6634</td>
<td>0.4401</td>
<td>10.4</td>
<td>15.9</td>
</tr>
<tr>
<td>37.1</td>
<td>51.5</td>
<td>35.67</td>
<td>Cu</td>
<td>33533</td>
<td>1.41</td>
<td>3.04</td>
<td>35.45</td>
<td>50.25</td>
<td>6.9494</td>
<td>1.1231</td>
<td>1.0713</td>
<td>11.7</td>
<td>60.3</td>
</tr>
<tr>
<td>40.7</td>
<td>53.9</td>
<td>35.67</td>
<td>Cu</td>
<td>33728</td>
<td>1.50</td>
<td>3.23</td>
<td>39.74</td>
<td>53.40</td>
<td>7.2847</td>
<td>1.5884</td>
<td>1.3190</td>
<td>12.3</td>
<td>62.0</td>
</tr>
<tr>
<td>67.8</td>
<td>30.3</td>
<td>6.78</td>
<td>Cu</td>
<td>40417</td>
<td>4.42</td>
<td>1.25</td>
<td>65.93</td>
<td>29.96</td>
<td>8.4023</td>
<td>1.0350</td>
<td>2.5230</td>
<td>52.7</td>
<td>32.4</td>
</tr>
<tr>
<td>67.8</td>
<td>69.6</td>
<td>35.67</td>
<td>Cu</td>
<td>41593</td>
<td>1.93</td>
<td>3.09</td>
<td>66.35</td>
<td>68.84</td>
<td>8.2207</td>
<td>1.0918</td>
<td>2.2797</td>
<td>21.5</td>
<td>77.9</td>
</tr>
<tr>
<td>97.6</td>
<td>83.5</td>
<td>35.67</td>
<td>Cu</td>
<td>47090</td>
<td>2.31</td>
<td>3.19</td>
<td>95.08</td>
<td>82.51</td>
<td>8.8900</td>
<td>1.3337</td>
<td>3.2952</td>
<td>29.8</td>
<td>93.6</td>
</tr>
<tr>
<td>13.6</td>
<td>13.6</td>
<td>6.78</td>
<td>SS</td>
<td>30807</td>
<td>1.96</td>
<td>1.05</td>
<td>12.13</td>
<td>13.33</td>
<td>4.2304</td>
<td>1.5098</td>
<td>0.1316</td>
<td>11.6</td>
<td>17.1</td>
</tr>
<tr>
<td>37.1</td>
<td>51.5</td>
<td>35.67</td>
<td>SS</td>
<td>49090</td>
<td>1.39</td>
<td>2.53</td>
<td>32.76</td>
<td>49.59</td>
<td>5.2214</td>
<td>1.6660</td>
<td>0.3158</td>
<td>13.0</td>
<td>62.6</td>
</tr>
<tr>
<td>40.7</td>
<td>23.5</td>
<td>6.78</td>
<td>SS</td>
<td>56117</td>
<td>3.41</td>
<td>0.96</td>
<td>36.47</td>
<td>23.14</td>
<td>5.6312</td>
<td>1.8196</td>
<td>0.4338</td>
<td>38.0</td>
<td>29.7</td>
</tr>
<tr>
<td>40.7</td>
<td>53.9</td>
<td>35.67</td>
<td>SS</td>
<td>50603</td>
<td>1.49</td>
<td>2.50</td>
<td>37.94</td>
<td>53.12</td>
<td>5.3579</td>
<td>1.8071</td>
<td>0.3516</td>
<td>15.2</td>
<td>65.9</td>
</tr>
<tr>
<td>67.8</td>
<td>30.3</td>
<td>6.78</td>
<td>SS</td>
<td>72614</td>
<td>4.45</td>
<td>0.95</td>
<td>62.67</td>
<td>30.19</td>
<td>6.3614</td>
<td>1.8065</td>
<td>0.7295</td>
<td>66.0</td>
<td>38.1</td>
</tr>
<tr>
<td>67.8</td>
<td>69.6</td>
<td>35.67</td>
<td>SS</td>
<td>65071</td>
<td>1.92</td>
<td>2.45</td>
<td>63.30</td>
<td>68.55</td>
<td>6.0185</td>
<td>0.3705</td>
<td>0.5752</td>
<td>25.8</td>
<td>84.3</td>
</tr>
<tr>
<td>97.6</td>
<td>83.5</td>
<td>35.67</td>
<td>SS</td>
<td>77856</td>
<td>2.32</td>
<td>2.42</td>
<td>92.82</td>
<td>82.77</td>
<td>6.6345</td>
<td>0.3627</td>
<td>0.8749</td>
<td>38.4</td>
<td>100.1</td>
</tr>
</tbody>
</table>