Micro-Meteoroid and Orbital Debris (MMOD) Protection Overview
NASA Hypervelocity Impact Technology (HVIT) Group

Eric Christiansen/JSC-XI4
Dana Lear/JSC-XI4
Jim Hyde/JSC-XI4 (JETS)
MMOD 101 Topics

- MM and OD environments
- Observed MMOD impact damage
- MMOD risk assessment process
- MMOD protection
- Hypervelocity Impact Technology (HVIT) group at NASA Johnson Space Center
MMOD Environment Models

• Orbital Debris environment definition model is provided by Johnson Space Center (Orbital Debris Program Office)
 – OD is the predominate threat in low Earth orbit
 – Man-made objects in orbit about Earth impacting up to 16 km/s
 • average 9-10 km/s for ISS orbit
 – High-density (steel), medium-density (aluminum) and low-density (plastic) are major constituents of the debris population
 – ORDEM 3.0 is latest model: http://orbitaldebris.jsc.nasa.gov/

• Meteoroid model provided by Marshall Space Flight Center
 – Natural particles in orbit about sun
 • Mg-silicates, Ni-Fe, others (porous, average density = 1.0g/cm³)
 – Meteoroid impact speeds: 11-72 km/s
 • Average in Earth orbit 22-23 km/s
 – MEM-R2 is latest release:
 http://www.nasa.gov/offices/meo/home/index.html
MMOD Environment Models

- Meteoroids consist of background sporadic flux (static), and streams from meteor showers (variable)
 - Occasionally, showers can turn into storms
- Orbital Debris is dynamic, changing as function of the rate of on-orbit explosions & collisions, launch rate and atmospheric drag/solar activity

Note, Spatial Density is proportional to impact risk
1980

Cataloged objects >10 cm diameter
1990

Cataloged objects >10 cm diameter
Cataloged objects >10 cm diameter
Cataloged objects >10 cm diameter
Debris movies

- Iridium-Cosmos collision
- Debris fly-through
• According to the U.S. Satellite Catalog, the number of 10 cm and larger objects in Earth orbit increased slightly in 2016.
Mass in Near-Earth Space Continues to Increase

- The material mass in Earth orbit continues to increase and exceeded 7400 metric tons in 2016.
"The current debris population in the LEO region has reached the point where the environment is unstable and collisions will become the most dominant debris-generating mechanism in the future”

– Liou and Johnson, Science, 20 January 2006
Orbital Debris Material Distributions – A-Train

ORDEM Populations for 2013 98° 705 km Orbit Flux as a Function of Debris Size

- ORDEM 3.0 LD Population
- ORDEM 3.0 MD Population
- ORDEM 3.0 HD Population
- ORDEM 3.0 Total Population
- ORDEM 2000
Effects of Micrometeoroid and Orbital Debris (MMOD) Impacts

• Even small MMOD impacts can cause considerable damage
 – Hypervelocity MMOD impacts represent a substantial threat to spacecraft
 – Rule of thumb: at 7km/s, aluminum sphere can penetrate completely through an aluminum plate 4x the sphere’s diameter
MMOD Damage to ISS Radiators

- MMOD impact damages observed to ISS radiator panels during Russian EVA (June 2013)
MMOD Damage to ISS Radiators
MMOD Damage to ISS Radiators (US)

- MMOD impact damages observed to ISS radiator panels (Aug. 2013)
ISS Photovoltaic Radiator (P4) MMOD damage

- Initial indication found on 6/30/2014
Measurement of P4-PVR Radiator Damage
“2A” Side of Panel 3

- Width: 2.26” +/- 0.20”
- Width: 3.9” +/- 0.35”
- Length: 5.0” +/- 0.4”
Ground hypervelocity impact test MMOD damage compared to P4 photovoltaic radiator damage

- Good comparison between on-orbit damage and ground-based hypervelocity impact test from 4.5 mm diameter aluminum spherical projectile at 7.08 km/s and 50 deg impact angle (angle from target normal) compares well with actual damage.
Solar Array Damage

MMOD impact breaks bypass diode causing overheat

Front of Panel

Back of Panel

Disconnected diode

MMOD hole

MMOD hole
Another example of ISS Solar Array Damage from MMOD

MMOD damage caused disconnected bypass diode, leading to cell overheat damage
MMOD Risk Assessment Process

- Process used by HVIT to identify MMOD risk drivers, evaluate risk mitigation options, optimize MMOD shielding, verify compliance with protection requirements
• **Poisson Statistics used to determine failure risk**
 – Probability of No Failure = exp (-N)
 • N = mean number of failures
 • N = flux of MMOD particles at/above ballistic limit particle size (number per m²-year) * surface area (m²) * time (years)
 • PNF expressed in fraction
 • **Note:** as spacecraft size increases, or mission duration increases, PNF decreases
 • **Note 2:** as ballistic limit particle size increases (i.e., by using tougher materials or better shielding), flux decreases and PNF increases (improves)
 – Risk of Failure = 1 – PNF
 • Risk expressed in terms of % or Odds of failure
• **Option:** can determine an average MMOD particle size that spacecraft shield needs to stop in order to meet a given reliability level, knowing the area and mission duration
ISS shielding overview

- Several hundred MMOD shields protect ISS, differing by materials, standoff distance, and capability.
- Heavier shields on front & sides (where we expect most MMOD impacts), less capable shielding on aft, nadir and visiting vehicles.
MMOD Shielding

- A multi-layer spaced shield provides more effective protection from hypervelocity impact than single layer

- **Several types of shielding applied to spacecraft MMOD protection**
 - Whipple shields
 - Nextel/Kevlar “Stuffed Whipple” shields
 - Multi-Shock shields

- **Protection performance characterized by impact tests & simulations**
 - Defined by “ballistic limit” equations (BLEs)
MMOD shielding background

- MMOD shields typical composed of bumper(s), standoff, and rear wall (final protection layer)
 - Exclude multi-layer insulation (MLI) thermal blanket

Purpose: Breakup MMOD particle, laterally disperse resulting debris

Key material & physical parameters ($V \geq 7 \text{ km/s}$): density, thickness to projectile diameter ratio, thermal properties

Purpose: Further breakup debris from first impact, slow expansion of debris cloud

Key material & physical parameters ($V \geq 7 \text{ km/s}$): combination of first bumper and rear wall properties

Purpose: Stop debris from MMOD & bumper(s)

Key material & physical parameters ($V \geq 7 \text{ km/s}$): strength, toughness, thickness
Ballistic Limits for Whipple Shield & equal mass Monolithic

Velocity Range:
- Ballistic Regime
- Fragmentation & Partial Melt Regime
- Complete Melt Regime

State of Debris Cloud:
- Few solid fragments (for Al on Al impacts)
- Many (increasing with velocity) solid fragments & liquid droplets
- Fine droplets, few solid fragments, some vapor

Ballistic Limit Improvement due to Shield Standoff
\[\Delta d_{\text{Crit}} \]

0.12cm Al bumper
10cm standoff
0.32cm Al6061T6 rear wall

Expect “failure” above curves

Whipple dcrit @ 0 deg
monolithic dcrit @ 0 deg
Hypervelocity Impact Technology (HVIT) Group

• **Background**
 – The HVIT group has been in existence for over 30 years at JSC developing and evaluating spacecraft micrometeoroid and orbital debris (MMOD) shielding for crewed and non-crewed spacecraft, and designing operational techniques to reduce MMOD risk
 – Small cadre of skilled and accomplished technical & engineering staff
 – HVIT works closely with the spacecraft engineering/design groups to develop MMOD protection solutions to meet MMOD requirements with minimum mass, cost and schedule
 – Products are based on a combination of hypervelocity impact test and analysis

• **Goal**
 – Improve MMOD protection of NASA spacecraft to meet/exceed crew safety and mission success requirements
MMOD Risk Assessment Tools

- Bumper Code – Perform penetration & damage risk assessments
- MSC-Surv – Assess consequences of penetration for ISS: loss-of-crew, evacuation risk
- Hydrocodes (CTH, Autodyne, Exos, others) – Numerical simulation of hypervelocity impact
HVIT analysis anchored in hypervelocity impact test results

• JSC-XI HVIT plans and performs over 400 impact tests per year
 • White Sands Test Facility (WSTF) two-stage light gas-guns up to 8 km/s
 • University of Dayton Research Institute (UDRI) 3-stage launcher to 10 km/s
 • Southwest Research Institute (SwRI) shaped-charge launcher to 11 km/s

• Data used to develop and verify ballistic limit equations used in Bumper code on range of different spacecraft components and subsystems
Post-flight Inspection Results for the ISS PMA-2 Cover

- HVIT and Boeing personnel inspected the PMA-2 cover for MMOD impacts after it was returned on the SpaceX CRS-6 mission
 - The cover was exposed to MMOD impacts for 1.63 years (from July 2013 to February 2015)
 - Located on the forward port of the ISS pressurized mating adapter 2 (PMA-2)
 - Cover is 2m diameter multilayer blanket with a beta-cloth exterior surface (Teflon coated glass fabric)
- Twenty-six (26) micrometeoroid and orbital debris (MMOD) impact features were found
- Observed hypervelocity impact features were compared with Bumper 3 predictions using ORDEM 3.0 and MEM-R2
PMA-2 cover location on ISS

PMA-2 Cover

Pressurized Mating Adapter (PMA) 2

velocity

zenith
Post Flight Inspection Results

- 26 impact features indicated by colored markers in image on right
- Max hole diameter = 1.01 mm
- Average crater diam. = 0.45 mm
Six samples were extracted intact using a “hole punch” technique

Relative orientation of internal layers was preserved

Samples were examined by Scanning Electron Microscope (SEM) equipped with energy dispersive X-ray (EDX) spectrometers to locate and determine elemental composition of impact residues

Log #1, diameter = 0.60 mm

Log #13, diameter = 0.73 mm
SEM-EDXA compositional indication of high density orbital debris (OD) as the source in 4 of 6 samples, and micrometeoroid (MM) in 2 samples

<table>
<thead>
<tr>
<th>Impact Site</th>
<th>Hole Size (mm)</th>
<th>Impactor Type: Major Constituents</th>
<th>Possible Impactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.60</td>
<td>OD: Steel, ZnS, FeO, Ti</td>
<td>Steel</td>
</tr>
<tr>
<td>2</td>
<td>1.01</td>
<td>OD: Steel, Nickel-Oxide</td>
<td>Steel</td>
</tr>
<tr>
<td>10</td>
<td>0.80</td>
<td>OD: Steel, Iron-oxide</td>
<td>Steel</td>
</tr>
<tr>
<td>12</td>
<td>0.57</td>
<td>MM: Ca, Mg, Fe, S, O</td>
<td>Chondrite</td>
</tr>
<tr>
<td>13</td>
<td>0.73</td>
<td>MM: Fe, Ni, S</td>
<td>metal/sulfide-rich</td>
</tr>
<tr>
<td>24</td>
<td>0.36</td>
<td>OD: Steel, Iron-oxide, Ti</td>
<td>Steel</td>
</tr>
</tbody>
</table>
Comparison between observed holes and Bumper 3 predictions

- Bumper predictions for MM and OD are consistent with observations for holes sizes > 0.3mm (counts for hole sizes < 0.3mm suffer from observer/eye limits)
Bumper Code Assessment

- Bumper 3 was used to calculate the expected number of holes in the beta cloth of a stand alone model of the PMA-2 cover (see table below)
- Years = 2013 through 2015
- Time averaged altitudes
- Damage equation = beta cloth hole size

<table>
<thead>
<tr>
<th>Hole Diameter (cm)</th>
<th>MEM R2</th>
<th>ORDEM 3.0</th>
<th>MMOD TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0288</td>
<td>16.89</td>
<td>14.60</td>
<td>31.49</td>
</tr>
<tr>
<td>0.0460</td>
<td>4.40</td>
<td>3.87</td>
<td>8.27</td>
</tr>
<tr>
<td>0.0920</td>
<td>0.46</td>
<td>0.68</td>
<td>1.14</td>
</tr>
<tr>
<td>0.1380</td>
<td>0.11</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>0.1840</td>
<td>0.04</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>0.2300</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start Date</th>
<th>End Date</th>
<th>Days</th>
<th>Years</th>
<th>Altitude (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/9/13</td>
<td>1/1/14</td>
<td>176</td>
<td>0.482</td>
<td>413.6</td>
</tr>
<tr>
<td>1/1/14</td>
<td>1/1/15</td>
<td>365</td>
<td>1.000</td>
<td>414.5</td>
</tr>
<tr>
<td>1/1/15</td>
<td>2/25/15</td>
<td>55</td>
<td>0.151</td>
<td>402.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>596</td>
<td>1.633</td>
<td></td>
</tr>
</tbody>
</table>
References

• More information available:
 – NASA TP-2003-210788, Meteoroid/Debris Shielding
 – NASA TM-2003-212065, Integration of MMOD Impact Protection Strategies into Conceptual Spacecraft Design
 – NASA TM-2009-214789, MMOD Shield Ballistic Limit Analysis Program