High-Performance Spaceflight Computing (HPSC) Middleware Overview

Alan Cudmore

NASA Goddard Space Flight Center
Flight Software Systems Branch (Code 582)

Alan.P.Cudmore@nasa.gov

This is a non-ITAR presentation, for public release and reproduction from FSW website.
Agenda

- High Performance Spacecraft Computing (HPSC) Overview
- HPSC Overview
- HPSC Contract
- HPSC Chiplet Architecture
- HPSC System Software
- HPSC Middleware
- NASA HPSC Use Cases
- HPSC Ecosystem
- Summary/Status
High Performance Spaceflight Computing (HPSC) Overview

• The goal of the HPSC program is to dramatically advance the state of the art for spaceflight computing

• HPSC will provide a nearly two orders-of-magnitude improvement above the current state of the art for spaceflight processors, while also providing an unprecedented flexibility to tailor performance, power consumption, and fault tolerance to meet widely varying mission needs

• These advancements will provide game changing improvements in computing performance, power efficiency, and flexibility, which will significantly improve the onboard processing capabilities of future NASA and Air Force space missions

• HPSC is funded by NASA’s Space Technology Mission Directorate (STMD), Science Mission Directorate (SMD), and the United States Air Force

• The HPSC project is managed by Jet Propulsion Laboratory (JPL), and the HPSC contract is managed by NASA Goddard Space Flight Center (GSFC)
Following a competitive procurement, the HPSC cost-plus fixed-fee contract was awarded to Boeing.

Under the base contract, Boeing will provide:
- Prototype radiation hardened multi-core computing processors (Chiplets), both as bare die and as packaged parts
- Prototype system software which will operate on the Chiplets
- Evaluation boards to allow Chiplet test and characterization
- Chiplet emulators to enable early software development

Five contract options have been executed to enhance the capability of the Chiplet:
- On-chip Level 3 cache memory
- Added a real-time processing subsystem containing two lockstepable ARM R-class processors and a single ARM A-class processor
- Triple Time Triggered Ethernet (TTE) interfaces
- Dual SpaceWire interfaces
- Package amenable to spaceflight qualification

Contract deliverables are due April 2021.
HPSC Chiplet Architecture

High Speed Processing
- A53 Cluster 1
 - Quad Cortex A53
 - FPU, NEON SIMD
 - L1 Cache (64KB I$, 64KB D$)
- A53 Cluster 2
- 2MB L2 Cache

Timing, Reset, Configuration and Health
- Clk Gen
- PLL
- Coresight
- Timers
- Boot Rom
- 1MB SRAM

Real Time Processing
- Dual Cortex-R52
 - Neon SIMD
 - 1MB TCM

Cortex-A53
- FPU, NEON SIMD
- 512KB L2

High Speed I/O
- DDR 3/4
- PCIe
- Spacewire
- Ethernet
- TTE

Low Speed I/O
- SRIO
- PCIe
- JTAG
- NVM
- UART
- GPIO

System Bus
- 4MB L3 Cache

This is a non-ITAR presentation, for public release and reproduction from FSW website.
Timing, Reset, Config & Health Controller (TRCH)
Triple Modular Redundant low power ARM M4F core for configuration, health and status, and fault monitoring
Real Time Processing Subsystem (RTPS)

- Dual lockstep R52 ARM v8-R (600Mhz)
 - Three 1MB Tightly Coupled Memories (TCM)
 - FPU and NEON SIMD
- Single A53 ARM v8 compliant cores (600Mhz)
 - A53 w/512KB Level 2, 32KB Instruction & 32KB Data cache
 - FPU and NEON SIMD
- Separate PCIe and DDR3/DDR4 interfaces
HPSC Chiplet Architecture

High Performance Processing Subsystem (HPPS)
- 8 A53 ARM v8 compliant cores (800Mhz)
- Shared 4MB L3 cache
- Quad shared 2MB L2 x 2
- Per core 32KB Instruction & 32KB Data cache
- Includes FPU and NEON SIMD
HPSC Chiplet Architecture

- 3-DDR3/4 interfaces (800Mhz)
 - can be populated with DDR and/or MRAM
- 2-NAND/NOR/SRAM/MRAM interfaces
 - (not shown)

This is a non-ITAR presentation, for public release and reproduction from FSW website.
HPSC Chiplet Architecture

High Speed I/O
- 6 sRIO high speed interfaces w/4 lanes per port for 41.24Gb/s per port
 - Total of 59.1GB/s of IO bandwidth
- Embedded sRIO switch with 2 internal endpoints
- 2 Gen2 PCIe ports at 2 lanes per port 10Gb/s per port
 - Total of 20Gb/s of IO bandwidth
- 3 Time Triggered Ethernet ports at 10/100/1000Mb/s each
- 2 SpaceWire ports at 400Mb/s each
- 1 general purpose Ethernet port at 10/100/1000Mb/s
HPSC Chiplet Architecture

High Speed Processing
- A53 Cluster 2
 - Quad Cortex-A53
 - FPU, NEON SIMD
 - L1 Cache (64KB I$, 64KB D$)
 - 2MB L2 Cache

Low Speed I/O
- Non-volatile memory
- JTAG
- UART
- I2C
- SPI
- 64 general purpose I/O

Real Time Processing
- Dual Cortex-R52
- Neon SIMD
- 1MB TCM
- Cortex-A53
 - FPU, NEON SIMD
 - 32KB I$, 32KB D$
 - 512KB L2

System Bus
- DDR 3/4
- PCIe
- 4MB L3 Cache

Low Speed I/O
- JTAG
- NVM
- UART
- GPIO

This is a non-ITAR presentation, for public release and reproduction from FSW website.
HPSC Chiplet Architecture
Fault Tolerance and Debug Features

HW based fault tolerance
• EDAC, scrubbing
• TMR of critical logic
• ARM TrustZone
• Access isolation regions

ARM Coresight debug and trace subsystem
• The HPSC Chiplet will be delivered with a complement of prototype system software developed by Boeing subcontractor University of Southern California/Information Sciences Institute (USC/ISI)

• The System Software leverages a large complement of existing open source software including:
 ▪ Libraries, operating systems, compilers, debuggers, and simulators.
 ▪ Much of the of this software will be unmodified.

• The System Software consists of:
 1. Board support packages for Linux and RTEMS
 2. Development tools (e.g., compilers, debuggers, IDEs)
 3. Chiplet Configuration APIs
 4. Mailbox API
 5. Software-based fault tolerance libraries
 6. Chiplet emulators

• The goal is to build a sustainable software ecosystem to enable full lifecycle software development.
HPSC System Software

System Software APIs

Fault Detection

64 Bit ARM (Aarch64)
Yocto Linux A53 BSP
KVM Hypervisor

Fault Detection

RTEMS Cortex M4 BSP
RTEMS R52 BSP
(TBD) RTOS A53 BSP

Operating Systems and Chiplet Drivers
(RTPS A53 RTOS is TBD)

High Performance Processing Subsystem (HPPS)

ARM A53 Cluster

ARM A53 Cluster (4)

Chiplet Configuration Manager Subsystem (TRCH)

TMR
ARM M4

Real Time Processing Subsystem (RTPS)

ARM R52

ARM A53

This is a non-ITAR presentation, for public release and reproduction from FSW website.
HPSC Reference Board Support Package (BSP) Features:

- TRCH Cortex-M4 will execute RTEMS with support for:
 - SRIO, low speed I/O, configuration registers, windowed-access into all memories.
- RTPS Cortex-R52 will execute RTEMS with support for:
 - SRIO, PCIe, Spacewire, TTE, low speed I/O, RTPS DDR, windowed access into HPPS DDR, NVRAM.
- HPPS Cortex-A53 clusters will execute Yocto Linux with support for:
 - SRIO, PCIe, Spacewire, Ethernet, TTE, HPPS DDR, NVRAM

- **HPSC Chiplet supports running Linux, which makes available a rich and familiar development environment. This improves efficiency of software development in particular for science applications**
 - Many science applications already start off development in Linux only to be ported to a different OS. With HPSC, no extra porting step is required, saving effort and reducing risk
The HPSC Chiplet ensures that misbehavior in HPPS cannot interfere with critical functions in the RTPS
- The HPSC Chiplet provides a Trusted Computing Base (TCB) that is small relative to the overall capability of the system.
- For example, a minimal TCB would consist of flight control, communications, health monitor, and software update management running on the RTOS. These high criticality functions remain safely isolated from any misbehavior in Linux

One of many potential examples of fault isolation in the HPSC
- Other examples include the use of a hypervisor or partitioned OS on the HPPS
HPSC Middleware

• The Air Force Research Laboratory (AFRL) is funding NASA Jet Propulsion Laboratory (JPL) and NASA Goddard Space Flight Center (GSFC) to develop HPSC Middleware

• HPSC Middleware will provide a software layer that provides services to the higher-level application software to achieve:
 ▪ Configuration management
 ▪ Resource allocation
 ▪ Power/performance management
 ▪ Fault tolerance capabilities of the HPSC chiplet

• Serving as a bridge between the upper application layer and lower operating system or hypervisor, the middleware will significantly reduce the complexity of developing applications for the HPSC Chiplet
HPSC Middleware

Mission Flight Software Applications

Middleware
On HPPS A53s

Middleware
On RTPS R52
Middleware
On RTPS A53

System Software APIs

Fault Detection

64 Bit ARM (Aarch64)
Yocto Linux A53 BSP

RTEMS
Cortex M4
BSP

RTEMS
R52
BSP

(TBD)
RTOS
A53 BSP

Config Mgmt

High Performance Processing Subsystem (HPPS)

Chiplet Configuration Manager Subsystem (TRCH)

Real Time Processing Subsystem (RTPS)

ARM A53 Cluster

TMR
ARM
M4

ARM R52
ARM A53

This is a non-ITAR presentation, for public release and reproduction from FSW website.
Middleware Functions

• The HPSC Middleware provides the following key functions:
 ▪ Boot and Load Services
 ▪ Chiplet Configuration Management
 ▪ Chiplet Resource Allocation and Management
 ▪ Chiplet Power and Performance Management
 ▪ Fault Tolerance and Redundancy Management
 ▪ Messaging Services

• These functions are implemented through 13 Middleware Services
Middleware functions are provided by the following services

1. Deployment and Multicore Programming Services
 - Deployment of time critical vs computational intensive applications to RTPS & HPPS
 - Thread creation and assignment to specific processing cores for execution
 - Utilize multicore environment to establish parallel processing capability
 - Utilize Linux/MPI features
 - Utilize OpenMP library for multicore programming functions

2. Machine Information Services
 - Get information about cores, clusters, chiplets, and system

3. Resource Management/Arbitration Services
 - Manage configuration files and assign available resources to software clients

4. Memory Management Services
 - MMU configuration, memory allocation to applications

5. Interrupt Services
 - Configure Interrupt controller to route interrupts to specific cores at runtime

6. Timing Services
 - Establish, synchronize, and distribute time
7. Messaging Services
 • Send/receive messages between tasks on the same or different cores and Chiplets
8. Power Management Services
 • Power on/off setting for cores/clusters/Chiplets, and set clock rates
9. Debug and Trace Services
 • Support the interface for software debugging during development
 • Support the capability for performance metrics collection during execution
10. Boot and Load Process and System Configuration Services
 • Provide an Initial Program Loader (IPL) and support various boot types/processes
11. Peripheral IO Services
 • Allocate and configure Chiplet Peripheral I/O to software clients
12. Multi-Chiplet Management Services
 • Configure and manage Inter-Chiplet interfaces (e.g., boot, messaging, resources)
13. Fault and Redundancy Management Services
 • Fault detection (HW/SW faults) and recovery
HPSC Use Cases – Rovers and Landers

Rover

Compute Needs
- Vision Processing
- Motion/Motor Control
- GNC/C&DH
- Planning
- Science Instruments
- Communication
- Power Management
- Thermal Management
- Fault detection/recovery

System Metrics
- 2-4 GOPs for mobility (10x RAD750)
- >1Gb/s science instruments
- 5-10 GOPs science data processing
- >10KHz control loops
- 5-10 GOPS, 1GB/s memory BW for model based reasoning for planning

Lander

Compute Needs
- Hard Real time compute
- High rate sensors w/zero data loss
- High level of fault protection/fail over

System Metrics
- >10 GOPs compute
- 10Gb/s+ sensor rates
- Microsecond I/O latency
- Control packet rates >1Kpps
- Time tagging to microsecond accuracy

This is a non-ITAR presentation, for public release and reproduction from FSW website.
HPSC Use Cases - High Bandwidth Instruments and SmallSats/Constellations

High Bandwidth Instrument

Compute Needs
- Soft real time
- Non-mission critical
- High rate sensors
- Large calibration sets in NV memory

System Metrics
- 10-20 GOPs compute
- >10GB/s memory bandwidth
- >20Gbps sensor IO data rates

Smallsat

Compute Needs
- Hard and Soft real time
- GNC/C&DH
- Autonomy and constellation (cross link comm)
- Sensor data processing
- Autonomous science

System Metrics
- 2-5Gbps sensor IO
- 1-10GOPs
- 1GB/s memory bandwidth
- 250Mbps cross link bandwidth

This is a non-ITAR presentation, for public release and reproduction from FSW website.
HPSC Use Cases – Human Exploration and Operations (HEO) Habitat/Gateway

Notional Two Fault Tolerant System

Sensors (Cameras, Lidars, etc.)

FCR

FCR

Sensors (Cameras, Lidars, etc.)

Sensors (Cameras, Lidars, etc.)

Sensors (Cameras, Lidars, etc.)

TTGbE x3

This is a non-ITAR presentation, for public release and reproduction from FSW website.
Broader HPSC Ecosystem

- Beyond the HPSC Chiplet, System Software, and Middleware developments, further investments can implement a robust HPSC avionics ecosystem

 - Advanced Spaceflight Memory
 - Increased RTOS Support
 - Multi-Output Point-Of-Load Converters
 - Coprocessors (GPU, Neuromorphic, etc.)
 - Special Purpose Chiplets (Security Chiplet, etc.)
 - Advanced Packaging (Multiple Chiplets in a Package)
 - Single Board Computers
Conclusion/Status

Conclusion

- As illustrated by the NASA use cases, our future missions demand the capabilities of HPSC
- Improved spaceflight computing means enhanced computational performance, energy efficiency, and fault tolerance
- With the ongoing HPSC development, we are well underway to meeting future spaceflight computing needs
- The NASA-developed Middleware will allow the efficient infusion of the HPSC Chiplet into those missions
- Further investments can implement a full HPSC avionics ecosystem

Status

- USC/ISI delivered System Software Release 1.0 at the May 2018 HPSC Preliminary Design Review
 - Consists of a QEMU based software emulator and initial Yocto Linux based software development kit
- The NASA JPL and GSFC HPSC Middleware team will complete Middleware release R1 this month (December 2018)
 - Middleware release R1 consists of a subset of the services, mostly targeting A53 Linux functionality while the hardware is being developed

Acknowledgements: Wes Powell (GSFC), Rich Doyle (JPL), Rafi Some (JPL), Jim Butler (JPL), Irene Bibyk (GSFC), Jonathan Wilmot (GSFC), John Lai (JPL), J.P. Walters (USC/ISI), and Jon Ballast (Boeing) for diagrams and use case definitions.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRL</td>
<td>Air Force Research Laboratory</td>
<td>FPGA</td>
<td>Field programmable Gate Array</td>
</tr>
<tr>
<td>AMBA</td>
<td>Advanced Microcontroller Bus Architecture</td>
<td>GNC</td>
<td>Guidance Navigation and Control</td>
</tr>
<tr>
<td>API</td>
<td>Application Programmer Interface</td>
<td>GOPS</td>
<td>Giga Operations Per Second</td>
</tr>
<tr>
<td>ARM</td>
<td>Advanced RISC Machines</td>
<td>GPIO</td>
<td>General Purpose Input Output</td>
</tr>
<tr>
<td>BIST</td>
<td>Built In Self Test</td>
<td>GPU</td>
<td>Graphics Processing Unit</td>
</tr>
<tr>
<td>BSP</td>
<td>Board Support Package</td>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>C&DH</td>
<td>Command and Data Handling</td>
<td>HEO</td>
<td>Human Exploration and Operations</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
<td>HPPS</td>
<td>High Performance Processing Subsystem</td>
</tr>
<tr>
<td>DDR</td>
<td>Double Data Rate</td>
<td>HPSC</td>
<td>High Performance Spacecraft Computing</td>
</tr>
<tr>
<td>DMIPS</td>
<td>Dhrystone Millions of Instructions per Second</td>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>DMR</td>
<td>Dual Modular Redundancy</td>
<td>I/O</td>
<td>Input / Output</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
<td>I2C</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>FCR</td>
<td>Fault Containment Region</td>
<td>IDE</td>
<td>Integrated Development Environment</td>
</tr>
<tr>
<td>Acronym</td>
<td>Meaning</td>
<td>Acronym</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>IPL</td>
<td>Initial Program Loader</td>
<td>NVRAM</td>
<td>Non Volatile Random Access Memory</td>
</tr>
<tr>
<td>ISA</td>
<td>Instruction Set Architecture</td>
<td>PCIe</td>
<td>Peripheral Component Interconnect express</td>
</tr>
<tr>
<td>ISI</td>
<td>Information Sciences Institute</td>
<td>QEMU</td>
<td>Quick Emulator</td>
</tr>
<tr>
<td>ITAR</td>
<td>International Traffic In Arms Regulations</td>
<td>RTEMS</td>
<td>Real Time Executive for Multiprocessor Systems</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
<td>RTOS</td>
<td>Real Time Operating System</td>
</tr>
<tr>
<td>KVM</td>
<td>Kernel Based Virtual Machine</td>
<td>RTPS</td>
<td>Real Time Processing Subsystem</td>
</tr>
<tr>
<td>MIPS</td>
<td>Millions of Instructions per Second</td>
<td>SCP</td>
<td>Self Checking Pair</td>
</tr>
<tr>
<td>MMU</td>
<td>Memory Management Unit</td>
<td>SIMD</td>
<td>Single Instruction Multiple Data</td>
</tr>
<tr>
<td>MPI</td>
<td>Message Passing Interface</td>
<td>SMD</td>
<td>Science Mission Directorate</td>
</tr>
<tr>
<td>MRAM</td>
<td>Magnetoresistive Random Access Memory</td>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>NAND</td>
<td>NOT-AND logic</td>
<td>SPW</td>
<td>Spacewire</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
<td>SRAM</td>
<td>Static Random Access Memory</td>
</tr>
<tr>
<td>NEON</td>
<td>Single Instruction Multiple Data architecture</td>
<td>SRIIO</td>
<td>Serial Rapid Input Output</td>
</tr>
</tbody>
</table>

This is a non-ITAR presentation, for public release and reproduction from FSW website.
Acronyms (3)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>Solid State Recorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMD</td>
<td>Space Technology Mission Directorate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMR</td>
<td>Triple Modular Redundancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRCH</td>
<td>Timing, Reset, Configuration, and Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTE</td>
<td>Time Triggered Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver Transmitter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USC</td>
<td>University of Southern California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMC</td>
<td>Vehicle Management Computer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>