Characterization of a photon counting test bed for space to ground optical pulse position modulation communications links

Jennifer M. Nappier, Brian E. Vyhnalek, Sarah A. Tedder, and Nicholas C. Lantz

NASA Glenn Research Center

Cleveland, Ohio
Introduction

Motivation:

• Real time photon counting optical ground receivers are needed to enable space to ground communications for both public and private applications.

• Future NASA photon counting optical communications missions: LCRD, O2O, Psyche

Strategy:

1. Develop an optical communications photon counting test bed to enable development of a real time optical receiver which includes the following subsystems:
 • Aft optics (photonic lantern), single photon counting detectors, and real time FPGA-based receiver.

2. Model key optical communications system parameters to understand impact on system performance

Objective:

• Utilize system test bed and model to predict system performance
Optical Communications System Test Bed

Optical Transmitter
- 10 MHz
- CW
- 1550 nm laser
- PM SMF
- SDR: CCSDS Optical Communications Waveform
- Driver Amplifier
- EO Modulator

Link Emulation
- Variable Attenuator
- 50/50 splitter
- Optical power monitor

Optical Receiver
- Opus One™
- 50 Ω
- SNSPD 1
- SNSPD 2
- T = 2.5 K
- T = 300 K
- Cryogenic feed-thru
- Oscilloscope
- SNSPD 1
- SNSPD 2

Bias/LNA
- Output pulses

Digitizer
- 50/50 splitter
- Polarization controllers
- Fiber optic coupler
- PC
- Control & Software Receiver

Polarization controllers
- 10 MHz
Optical Transmitter – Software Defined Radio

- Based on Harris Corporation Reconfigurable Space processor development card
- A custom optical mezzanine card performs serialization of electrical signal generated on FPGA
- Xilinx Virtex 7 FPGA houses the optical transmit waveform
Optical Transmitter – Waveform

- Implements the full CCSDS Optical Communications Coding and Synchronization Red Book telemetry link
- Testing performed with the following waveform:
 - PPM-32
 - Code rate 1/3
 - Slot width 1 ns
 - Guard band: 8 slots (25%)
 - Data rate 40 Mbps
- Note: channel interleaver bypassed for testing purposes
Optical Transmitter – Electro-optic Modulator System

- Consists of two high extinction ratio electro-optic modulators cascaded in series
- Electrical signal driving modulators is offset in time to narrow the optical pulse position modulation signal, improving the extinction ratio

Link Emulation

- Free space loss is emulated with a variable attenuator
- No additional noise inserted
 - $K_b \approx 0.0001$ background photons/slot
- Power meter used to measure optical power into the receiver

![Link Emulation Diagram]

Optical Transmitter
- 10 MHz
- SDR: CCSDS Optical Communications Waveform
- Driver Amplifier
- Driver Amplifier
- 1550 nm laser
- PM SMF

Optical Receiver
- Output pulses
- Opus One™
- SNSPD 1
- SNSPD 2
- Cryogenic feed-thru
- $T = 2.5 \text{ K}$
- $T = 300 \text{ K}$
- 50 Ω
- SMF
- Bias/LNA
- Digitizer
- Oscilloscope
- Control & Software Receiver
- PC

Link Emulation
- Optical power monitor
- Power meter
- Variable Attenuator
- 50/50 splitter
- Polarization controllers
- Fiber optic coupler
- 50/50 splitter
Optical Receiver – Single Photon Counting Detectors

Description:
- Contains two single mode fiber coupled detectors from the Quantum Opus, Opus One™ system

Characterization Results:
- Detector pulse rise time
 - 850 ps
- Detector reset time
 - 18-20 ps
- Maximum detection efficiency (polarization dependent)
 - 80% at maximum point
 - 50-60% at operating point due to detector blocking losses (1.5 dB blocking loss)
- Detector jitter full width half max:
 - Channel 1: 68 ps
 - Channel 2: 85 ps

www.nasa.gov
Optical Receiver – Waveform

- Detector pulses are sampled at 2 GHz with an oscilloscope and post-processed using a Matlab receiver model
- SCPPM decoder performs iterative decoding using the BCJR algorithm
- Sample jitter introduced by 2 GHz sampling of 850 ps detector pulse is ~45 ps RMS
- Calculated total receiver jitter:
 - Channel 1: 61 ps RMS
 - Channel 2: 68 ps RMS
System Simulations

Description:

- Matlab model of the CCSDS Optical Communications Coding and Synchronization telemetry link (downlink)
 - Transmit waveform
 - Floating point receive waveform has iterative decoding using the BCJR algorithm
- Simulations modeled key system parameters including:
 - Number of detectors
 - Detector blocking
 - Jitter
 - Background noise photons/slot (Kb)
 - Signal photons/signal slot (Ks)
- Performance metrics:
 - Bit error rate curves generated for fixed background noise
System Simulation Results – Capacity and Baseline

- PPM-32
- Code rate 1/3
- $K_b = 0.0001$ background photons/slot

![Capacity curve](capacity_curve.png)

Ideal number of detectors modeled as a Poisson process

Capacity curve generated through a Monte Carlo method
System Simulation Results – 1 Detector

- PPM-32
- Code rate 1/3
- $K_b = 0.0001$ background photons/slot

Due to very low background noise and use of a single detector, curve shifts to left.
System Simulation Results – 1 Detector + 20 ns Blocking

- PPM-32
- Code rate 1/3
- 1 ns slot width
- Guard band: 8 slots (25%)
- 40 Mbps data rate
- $K_b = 0.0001$ background photons/slot

No significant change in performance compared to no blocking due to pulse repetition rate of waveform selected
System Simulation Results – Detector Jitter

- PPM-32
- Code rate 1/3
- 1 ns slot width
- Guard band: 8 slots (25%)
- 40 Mbps data rate
- $K_b = 0.0001$ background photons/slot

60 ps RMS jitter: $\rightarrow 0.6$ dB loss
80 ps RMS jitter: $\rightarrow 0.8$ dB loss
Test bed System Testing Results – Channel 1

- PPM-32
- Code rate 1/3
- 1 ns slot width
- Guard band: 8 slots (25%)
- 40 Mbps data rate
- $K_b \approx 0.0001$ background photons/slot

Channel 1 (61 ps RMS jitter) matches simulation of 60 ps RMS jitter
Test bed System Testing Results – Channel 2

- PPM-32
- Code rate 1/3
- 1 ns slot width
- Guard band: 8 slots (25%)
- 40 Mbps data rate
- $K_b \approx 0.0001$ background photons/slot

Channel 2 (68 ps RMS jitter) matches simulation of 80 ps RMS jitter

System test from channel 2 (blue) matches simulation of 80 ps RMS jitter
Summary

• A photon counting optical communications system test bed was designed and characterized

• Key parameters of the system were modeled in simulation including:
 • Detector blocking
 • Detector jitter
 • Detector pulse rise time
 • Background noise

• BER curve results from the system test bed align with simulation results
 → Sources of loss in the system have been accurately characterized
 → Model can be used to predict performance of other waveforms
Acknowledgements

This work was funded by the Space Communications and Navigation Program at NASA.
Thank You!

www.nasa.gov/SCaN