Clumping of Pb was reported by [6] who found clumping at nano-meter scale via APT. These Pb clumps are not located with hotspots of U and Th and appear to have formed by a process such as volume diffusion, possibly into structural defects in the crystal lattice. We wish to learn if these Pb clumps could have formed by the diffusion and exchange that occurs during impact shock.

Methods: Zircons were picked out of the matrix of a host rock sourced from Keuhl Lake, Canada. Keuhl Lake (KL) is the source region of the 91500 zircon geochron standard and therefore zircon from this area is a well characterized material (see [7]). Large zircons (approx mass of two different individual grains used was 0.362 g, and 1.25 g) were individually picked or chiseled out of the host rock. The other material used was sanidine from the Bishop Tuff. This material was picked since it is very well characterized in Pb isotopes [8].

Previous Work and Justification: Some previous investigators (e.g [3]) have shocked zircon before. This research benefits from previous researchers. Our own experiments are unique by studying isotope mixing between phases and using modern analytical techniques such as Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and Atom Probe Tomography (APT) to learn more about the recovered shocked material.

Other workers [4] examined the possibility of using shocked lunar zircons to date lunar impact events while [5] examined zircon inclusions in shocked monazite using information known about the zircons to place constraints on the microstructures in the host monazite.

Figure 1: Graph of 207Pb/206Pb vs. 208Pb/206Pb for materials considered for this project. The two selected for initial experiments were Bishop Tuff sanidine from the Long Valley Caldera and zircon from Keuhl Lake, Canada. Bishop Tuff materials are shown in the inset.
shocked material was able to be recovered. Sample material from the target was examined thoroughly, specifically to locate interacting grains of zircon and sanidine. Resultant materials were selected, mounted in epoxy, then analyzed and imaged via Scanning Electron Microscopy (SEM). Some shocked sanidine material was also analyzed via LA-ICP-MS to ascertain if Pb ppm levels had changed. Analysis of diffusion couples was conducted via LA-ICP-MS on a 193 nm photon machines laser and an Agilent 7900 mass spectrometer.

Results from LA-ICP-MS: LA-ICP-MS analysis of the unshocked KL zircon showed Pb isotopes that yielded an age of about 1 Ga confirming that these samples are from KL and similar to the zircon 91500 standard. Unshocked sanidine has a total Pb content of 30.3 ppm with 2 S.E. of 0.65. Shocked sanidine, including some laser spots near co-located zircon, had a total Pb content of 31.1 ppm with 2 S.E. of 0.65.

Results from SEM: Many grains were analyzed via SEM and backscatter electron detection (BSD) techniques were used to learn about the composition of the grain. Energy dispersive x-ray spectroscopy (EDS) maps were also collected for interesting regions. The goal was to locate zircon grains in the primarily sanidine mixture to examine how the two phases interacted during the shock process.

Figure 2 (a,b,c,d). a) A shocked zircon grain co-located with a shocked sanidine grain imaged in BSD. b) An EDS map of Al, c) EDS map of Zr, d) EDS map of Cr

Figure 2a, shows one of these grains. At first zircon grains appeared to be almost painted on the surface of sanidine material, but after mounting in epoxy and polished, co-located zircon and sanidine grains were found. There is also some Cr (Fig 2d) probably from interactions with the stainless target during impact shock.

Atom Probe Tomography: Samples will also be analyzed via APT at the University of Alabama in early January of 2019. We hope to present data from atom probe tips sourced from unshocked zircon and sanidine as well as the post-shock zircon and sanidine. Particularly we wish to evaluate both the mixing of Pb isotopes during the impact shock process and determine if there is any observed Pb clumping in shocked zircon vs. unshocked zircon.

Pb mixing: Figure 3 shows a possible mixing curve between zircon and sanidine feldspar.

Figure 3. This figure shows anticipated Pb mixing between sanidine and zircon based on their Pb isotopic abundances and ratios.

Depending on the relative amounts of mixing between the two phases, the resultant 208/206 Pb ratio should fall somewhere along this line.

Acknowledgements: We are grateful to Jacobs, NASA JSC, the University of Rochester and the University of Alabama for providing support for this research. We would also like to thank Kathleen Vander Kaaden, Rick Rowland and Kelly Pando for general laboratory help.

References: