BioSentinel/Mars: Interplanetary Space Radiation Biosensor Experiment in Martian Transit on Mars 2020

A.J. Ricco, R. Hanel, B. Lewis, and S. Bhattacharya
NASA Ames Research Center, Moffett Field, CA, USA

Despite significant progress understanding biological radiation effects via terrestrial studies, no terrestrial source duplicates space’s unique radiation environment. Furthermore, no biological experiments have been conducted beyond low Earth orbit since Apollo. Understanding space's fundamental biological effects requires overcoming these limitations.

The BioSentinel 4U payload, under development for flight aboard Exploration Mission-1, measures biological responses to deep space radiation. Traveling to more than 1AU from Earth, BioSentinel/EM-1 will record DNA double-strand breaks (DSBs) repaired using a pathway common to humans and BioSentinel’s bioengineered yeast model organism, responding to as few as one biologically repaired DSB.

The BioSentinel/Mars 4U instrument (6-8kg; 5-8W; 0.2-1MB/week) would include eighteen 16-well biosensor fluidic cards, activated biweekly during Mars 2020’s cruise phase, to provide a dose-dependent rate of DSB/repair. The instrument, which includes solid-state sensors for total ionizing dose and linear-energy-transfer spectra, addresses MEPAG SKG-B3 by simultaneously measuring both spectra and biological effects of space radiation.

Biological measurements are rendered reliable by independent replicate experiments. The spatio-temporal uniformity of interplanetary galactic cosmic radiation makes BioSentinel/EM1 and BioSentinel/Mars approximate replicates, except for any major differences in solar particle events. Results will be compared to Earth and ISS controls to characterize the radiation/reduced-gravity parameter space by its biological impact.

Notes on maturation: The concept will be fully mature for Mars 2020. Continuing development of BioSentinel under the Advanced Exploration Systems program is in progress and will bring this payload to deep spaceflight readiness, with a planned deep-space functional lifetime of ~ 18 months, by late 2017. This includes development, test, and integration of the biological, fluidic, optical, electrical, thermal, and mechanical subsystems, as well as physical radiation sensor/spectrometer components and flight software. To fly on Mars 2020, the BioSentinel instrument will require changes to some interface and flight software details in order to accommodate differences between BioSentinel's small-sat. deep-space bus and the Mars 2020 bus. The 4U payload/instrument would be otherwise essentially unchanged in its EM-1 and Mars 2020 implementations.

Tony Ricco – BioSentinel Payload Technologist
NASA Ames Research Center

11/21/14
BioSentinel/SLS EM-1 Project Objectives

• Advance Exploration System (AES) Program Office selected BioSentinel to fly on the Space Launch System (SLS) Exploration Mission (EM-1) as a secondary payload
  • Payload selected to help fill HEOMD Strategic Knowledge Gaps in Radiation effects on Biology
  • Development Schedule based on a December 2017 Launch
• Key BioSentinel Project Objectives
  • Develop a deep space nanosat capability
  • Develop a radiation biosensor useful for other missions
  • Define & validate SLS secondary payload interfaces and accommodations for a biological payload

• BioSentinel Mars Objective
  • BioSentinel Payload measures the Radiation effects on Biology over a 9-Month Earth to Mars Trip
  • Flys on Cruise stage using power and data resources
  • Mission ends on approach to Mars
BioSentinel Relevance to SKGs

GOALS

- Life science studies beyond low Earth orbit (LEO) relevant to human exploration
- Use simple organisms to inform us of greatest risks to humans beyond LEO, so that appropriate protection can be developed & dangers can be mitigated
- Critical advances to autonomous life support technologies for small organisms

<table>
<thead>
<tr>
<th>Filling Strategic Knowledge Gaps (SKGs)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SKG documents</strong></td>
</tr>
<tr>
<td>Mars Precursor Strategic Analysis Group (P-SAG) SKGs, May 2012</td>
</tr>
<tr>
<td>P-SAG &amp; MEPAG (Mars Exploration Program Analysis Group)</td>
</tr>
<tr>
<td>SBAG SKGs, Nov 2012</td>
</tr>
<tr>
<td>LEAG-SAT SKGs, March 2012</td>
</tr>
</tbody>
</table>
The 1st Biology Experiment beyond LEO since Apollo

The limits of life in space, as we know it, is 12.5 days on a lunar round trip or 1 year in LEO. As we send people further into space, we can use model organisms to understand the biological risks and how they can be addressed.

BioSentinel is a 6U free-flying satellite that will be delivered by SLS EM-1 to a heliocentric orbit.

It will operate in a deep-space radiation environment throughout its 12 to 18-month mission.
BioSentinel Science Concept

• **Quantify DNA damage from space radiation environment**
  – Space environment cannot be reproduced on earth
  – Omnidirectional, continuous, low flux with varying particle types
  – Health risk for humans spending long durations beyond LEO
  – Radiation flux can spike 1000x during a solar particle event (SPE)

• **Correlate biologic response with LET and TID data**
  – BioSensor payload uses engineered *S. cerevisiae* yeast
  – Measures rate of Double Strand Breaks (DSB) in DNA
  – Linear Energy Transfer (LET) spectrometer measures particle energy and count
  – Total Ionizing Dose (TID) dosimeter measures integrated deposited energy

• **Yeast assay: microfluidic arrays monitor DSB/repair**
  – Three strains of *S. cerevisiae*, two controls and engineered strain
  – Wet and activate multiple banks of microwells over mission lifetime
  – DSB and associated repair enable cell growth and division
  – Activate reserve wells in event of a Solar Particle Event (SPE)
BioSentinel Mars Instrument

• Use the BioSentinel Payload currently in development
  – 18 Fluidic Card BioSensor Payload; Each Card has 16 micro-fluidic wells
  – Volume: ~4U (10 cm x 20 cm x 20 cm)
  – Mass: 6-8 kg
  – Power: 5-8W
  – Data Volume: 0.2-1MB/week
  – Linear Energy Transfer (LET) Spectrometer
  – Total Ionizing Dose (TID) Dosimeter
• Attach to Mars 2020 Cruise Stage to provide power and relay data back to Earth
• Wet 1 card every 2 weeks over the 9 –month Cruise Phase

• Graphics from Abe
Initial-Draft Science Requirements

- **Investigate biological space radiation effects on model organisms**
  - **Duration**: 6 / 9 months = minimum / **full** success
  - **Location**: In transit to Mars, beyond shielding of Earth’s magnetosphere
  - **Measurement 1**: Repair of DNA double strand breaks (DSBs)
  - **Measurement 2**: Long-term survival of a model organism
  - **Measurement 3**: Response to a solar particle event (SPE), if available

- **Monitor space radiation environment with physical rad’n. sensors**
  - Linear energy transfer (LET) characteristics
  - Total integrated ionizing dose (TID)

- **Correlate Mars transit results with other environments**
  - EM-1 secondaries heliocentric beyond-LEO orbit
  - Ground-based control at low radiation (terrestrial background)
  - Ground-based radiation exposure (BNL, LLUMC)
  - LEO studies (ISS)
BioSentinel/Mars Instrument

**Biological Support & Measurement Systems**

- support biology in stasis & growth
- enable & perform measurements
  - biological *and* physical radiation responses
  - 6 – 9 months
  - beyond-LEO environment: cosmic radiation including solar particle event if it occurs
- compatible with multiple platforms
  - free flyer (EM-1), Mars 2020, ISS, ground experiments
  - robust, standard data & power interfaces
**Configuration:**

~4U hermetic containment vessel

- 1 atm internal pressure, low RH
- **Fluidics:** 18 “sets” of 16 µwells ea.
  - 2 sets activated ~ monthly
  - 1 – 2 sets on “SPE standby”
    - organisms fly dry; rehydrate to activate

- **Pumps, Valves, Tubing, Media**
  - external to cards
  - low-permeability card, tubes, bags: keep the dried yeast dry
Payload: Biology / Fluidic / Optical / Thermal Configuration

Cross-section: 1 of (16 x 18) = 288 microwells

- Yeast dried onto µwell walls prior to integration & launch
- 1 set of 16 µwells wetted out monthly
- 3 LEDs (570, 630, 850 nm) and detector, per well, track growth via optical density and cell metabolic activity via dye color change
**Fluidic Subsystem Architecture**

(1 of 2 identical 9-card units shown)

- **Bag 1:** Low Leu
- **Bag 2:** – Leu
- **Bag 3:** Alamar Blue

1 pump, 13 valves (12 magnetically latched) per 144 wells

- **Metering Pump**
- **Spring-closed valve**
- **Mixer/Bubble Trap**

- **Manifold**
- **16-well card**
- **Check valves**
- **Desiccant traps**
- **Manifold**

**Waste**
**Payload Configuration (cont’d.)**

- **16-well fluidic card**

  - optical PCB/source
  - heater layer
  - fluidic card
  - heater layer
  - optical PCB/detection

(1 of 18)

- **Optical absorbance measurement per well**
  - Dedicated 3-color optical system at each well
  - Measure dye absorbance & optical density (cell population)
  - Ground pre-calibration + in-flight “active” cal.

- **Pressure & humidity sensors** in P/L volume

- **Dedicated thermal control system per card**
  - 23°C with 1°C uniformity, accuracy, stability
  - 1 temp. sensor per card; closed-loop control
BioSentinel/Mars Instrument

**Biology / fluidics / optical / thermal configuration**

16-well card = 1 “set” (18 sets total)

---

1 atm Payload Containment

[Diagram of instrument with labels for various components]

- Hermetic fluid storage & delivery (1-9)
- Hermetic fluid storage & delivery (10-18)
- Thermal exchange
- P/L Electronics
- LET spectrometer
- HD sensor

~ 4U

AES Secondary Payload Combined MCR/SRR 8/19-21/14
BioSentinel/Mars Instrument

BACK-UPS
BioSentinel EM-1 Spacecraft

Stowed Configuration

Medium Gain Antenna (MGA)

Deployable/Single Axis Gimbal Solar Arrays

Fluidic Card
*Each Card has a Set or Bank of 16 μwells*

18 Coplanar Fluidic Cards

Deployed Configuration (underside)

Low Gain Antenna (LGA)

Star Tracker (ST)

Batteries

Transponder

Propulsion System

Avionics

BioSentinel Payload
Payload Configuration: Thermal Requirements & Design

- **23 °C** biology temp. for “active growth” fluidic card
- **~4 °C** for non-active cards: maintain biological viability
  - “Keep-alive” 4 °C minimum at all times, cards & reagents
- Minimize temp. gradients in active fluidics card
- Minimize power to heat fluidics during experiment
- Minimize heat flow to surrounding non-active cards
- Kapton heaters + spreader bonded to each card
- Challenge: no active control from L-6 mo to deployment

**GapPad:** tuned thermal path to payload enclosure by choice of pad dimensions

**Isolating washers/spacers** (Ultem, SS, Al, etc.): **tunable thermal interfaces** enable structural design before complete thermal details
**Payload Configuration: Thermal Model Results**

As-modeled, < 0.5 W to heat single card

- 46,000 Nodes, 6 heat loads, 18 heaters, 206 contactors; FD & FE objects
- Fluidics card components meshed separately (2200 nodes) at high res.: capture thermal gradients, uniformity

---

**BioSentinel/Mars Instrument**

AES Secondary Payload Combined MCR/SRR 8/19-21/14
Payload Configuration: Electronics & Components

- **3 Payload Systems:** Biosensor, LET spectrometer, TID
  - Minimize electronics inside hermetic biosensor container
    - Earlier delivery of “in-can” electronics to bio team to start long-term tests
    - Less hardware tied up in long-duration tests
    - Changes less likely within biocompatibility zone

- **Subsystem Components**
  - **Optical:** 3 discrete LEDs – 0402 SMD pkg, “Y” geometry
    - TAOS intensity-to-freq. detector: 5-6 logs linear dynamic range
  - **Thermal:** AD590 sensors: easy integration; Kapton flex ckt. heaters
  - **Humidity:** Sensirion SHT15
  - **Pressure:** Motorola MPL3115A2
  - **TID:** Teledyne uDOS001 + charge pump + MSP430 + RS422
  - **LET** spectrometer: provided by RadWorks team
Payload Configuration: Processor, Interface, Power, Rad.

- **Control and storage provided by bus processor**
  - Implemented as a cFE task

- **Payload Local Processor:** baseline MSP430
  - FRAM, high radiation tolerance

- **Comm. Interface to Bus / Host:** RS-422
  - Simple, robust
  - Serial is standard, easier ground testing
  - RS-485 enhancement (S/W only) for greater functionality

- **Comm. Packet Protocol**
  - CCSDS: standard

- **Power:** 5 VDC & unreg (9-28 VDC); multiple ground returns

- **Rad-hard electronics:** Power parts, regulation and switches
  - Cannot afford power, space, cost for full rad-hard design
  - Total dose inside is low-moderate; spot shielding feasible
Payload Configuration (cont’d.)

• Radiation Sensors
  - LET “spectrometer” device: TimePix family solid-state device
    - measures coarse linear energy transfer spectra
    - Operates in time-over-threshold (TOT) mode as Wilkinson-type ADC
      - direct energy measurement per pixel
    - frequent measurement/caching of results; downlink binned LET spectra
    - provide “local space weather” periodic (~ hourly) snapshot
  - Total integrating dosimeter (TID): Teledyne µDOS001
    - ranged analog outputs (low, med, high, log)
    - 15 µrad res. (~20 s ambient GCR)

Typical TimePix frame:
256 x 256 x 14 bits
0.25 – 150 keV/µm LET range
Payload Configuration (cont’d.)

• Solar Particle Event Autonomous Trigger
  - Onboard monitor of TID (backups: TimePix shutter (integration) time, ground command)
  - Ionizing EM radiation (gamma) precedes particles by ~ hours
    - SPE differentiable from smaller coronal mass ejections
  - Activate “designated SPE set” of 16 fluidic wells
    - measure radiation biological damage under wet conditions
    - expected to generate more damage wet than in dry state
Radiation Environment for EM-1 Mission

Extended-mission-duration total dose:

- 110 Rad with no SPE (1.1 Gy, no shielding)
- 140 kRad with one “typical” SPE (no shielding)
  - with 3 mm Al shielding, 4 kRad (40 Gy)

12-month total dose
including 1 “average” SPE
Radiation Environment

LET Flux vs. Shielding thickness, H - U, 1 AU

Solar Energetic Particles + GCR

Integral Flux (#/cm²/day)

Target range for LET sensor

LET, keV/µm

Solar Particle Event + GCR

Integral Flux (#/cm²/day)

Target range for LET sensor

LET, keV/µm
BioSentinel/Mars Instrument

**Payload Heritage**

- **GeneSat** – overall bio P/L integration; hermetic sealing (3 years)
- **PharmaSat** – optics, thermal, multi-well fluidics, *S. cerevisiae*, biocompatibility, 48 µwells
- **O/OREOS SESLO, SEVO payloads** – dried organisms, 12-mo. stasis; cell filters in optical path; thermally isolated “bioblocks”; spectral data cache-and-downlink; high-radiation survival:
  > *3.5 years, high-inclination/high-altitude orbit*
- **EcAMSat** – multiple uniform multiwell fluid exchanges; 48 µwells
- **MisST** – image acquisition payload; peristaltic pump
- **SporeSat** – P/L processor w/ robust S/W
- **JSC RadWorks (CERN to ISS)** – LET spectrometer chip, control/measurement system, S/W to extract radn. spectra
- **LRO** – Teledyne µDOS001
- **LADEE** – S/C avionics incl. S/W
## Payload Subsystem Trades – 1: Bio/fluidics

<table>
<thead>
<tr>
<th>Trade</th>
<th>Options</th>
<th>Complete</th>
<th>Due*</th>
<th>Heritage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism storage</td>
<td>Dry, Wet</td>
<td>95%</td>
<td>MCR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Refresh media</td>
<td>Yes, No</td>
<td>95%</td>
<td>MCR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Sterilization - card</td>
<td>Autoclave, EtO, Other</td>
<td>95%</td>
<td>PDR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Sterilization – other components</td>
<td>Gamma, EtO, sterilant</td>
<td>75%</td>
<td>PDR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Fluidic component permeability</td>
<td>Low, med., high</td>
<td>65%</td>
<td>PDR</td>
<td>Low</td>
</tr>
<tr>
<td>Aerobic growth</td>
<td>Initial, Continuous</td>
<td>40%</td>
<td>CDR</td>
<td>High, low</td>
</tr>
<tr>
<td>Oxygenation approach</td>
<td>Pre-saturate; Heliox; @ wet-out</td>
<td>10%</td>
<td>CDR</td>
<td>Low</td>
</tr>
<tr>
<td>Pump(s)</td>
<td>Peristaltic, Inj., Piston, Diaphr.</td>
<td>45%</td>
<td>CDR</td>
<td>Mod., high</td>
</tr>
<tr>
<td>Valves</td>
<td>Mag. latching, Continuous pwr.</td>
<td>80%</td>
<td>MCR</td>
<td>Low, high</td>
</tr>
<tr>
<td>Fluidic connections</td>
<td>Manifold; direct tubing cxns.</td>
<td>80%</td>
<td>MCR</td>
<td>Low</td>
</tr>
<tr>
<td>Reagent containers</td>
<td>Bags, Rigid containers</td>
<td>90%</td>
<td>MCR</td>
<td>High, mod.</td>
</tr>
<tr>
<td>Other components: bubble trap, check valve, desiccant, tubing</td>
<td>Various</td>
<td>50%</td>
<td>PDR</td>
<td>Various</td>
</tr>
<tr>
<td>Materials choices: fill, perm., autoclave</td>
<td>Various</td>
<td>50%</td>
<td>PDR</td>
<td>Various</td>
</tr>
<tr>
<td>Compartments (fluidics/electronics)</td>
<td>One, two, three</td>
<td>40%</td>
<td>CDR</td>
<td>Low</td>
</tr>
</tbody>
</table>

*“MCR” due date = upon processing MCR inputs & outcome*
## Payload Subsystem Trades – 2: Bio Measurement etc.

<table>
<thead>
<tr>
<th>Trade</th>
<th>Options</th>
<th>Complete</th>
<th>Due</th>
<th>Heritage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Approach</td>
<td>Absorbance; fluorescence; other</td>
<td>95%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Choice of wavelengths/LEDs</td>
<td>R/G/B; fR/R/G; x/y/z</td>
<td>80%</td>
<td>MCR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Choice of detector</td>
<td>TAOS ASIC; photodiode, other</td>
<td>95%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Location of cell filters</td>
<td>in optical path, out of path</td>
<td>80%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Experiment / stasis temperatures</td>
<td>23 / 23 °C; 23 / 4 °C</td>
<td>40%</td>
<td>PDR</td>
<td>Low</td>
</tr>
<tr>
<td>Thermal spreader locations</td>
<td>Top &amp; bottom; top only</td>
<td>80%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Thermal spreader approach</td>
<td>Al plate; flex ckt ground plane</td>
<td>60%</td>
<td>PDR</td>
<td>Low</td>
</tr>
<tr>
<td>Pressure sensor</td>
<td>Motorola [SporeSat]; other</td>
<td>100%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Humidity sensor</td>
<td>Sensirion; other</td>
<td>90%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Acceleration &amp; gyro</td>
<td>Use bus IMU; P/L in-situ</td>
<td>80%</td>
<td>PDR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Temp. sensors: no. &amp; locations</td>
<td>1 per card, int.; 2 per card, ext.</td>
<td>50%</td>
<td>PDR</td>
<td>Low/high</td>
</tr>
<tr>
<td>Choice of processor</td>
<td>MSP430; PIC32; same as bus; other</td>
<td>80%</td>
<td>CDR</td>
<td>High</td>
</tr>
<tr>
<td>RTOS (SporeSat heritage)</td>
<td>Yes; no</td>
<td>80%</td>
<td>PDR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Multiple processors in P/L</td>
<td>Yes; no</td>
<td>90%</td>
<td>MCR</td>
<td>High</td>
</tr>
</tbody>
</table>

*MCR" due date = upon processing MCR inputs & outcome*
### Payload Subsystem Trades – 3: Physical Radiation Msrmt.

<table>
<thead>
<tr>
<th>Trade</th>
<th>Options</th>
<th>Complete</th>
<th>Due</th>
<th>Heritage</th>
</tr>
</thead>
<tbody>
<tr>
<td>LET spectrometer choice</td>
<td><strong>TimePix family</strong>; TEPC (gas); other</td>
<td>80%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Measurement frequency</td>
<td><strong>Continuous</strong>; periodic</td>
<td>70%</td>
<td>PDR</td>
<td>Mod.</td>
</tr>
<tr>
<td>Onboard storage capacity</td>
<td>3 days – <strong>18 months</strong></td>
<td>50%</td>
<td>PDR</td>
<td>--</td>
</tr>
<tr>
<td>Integration time adjust</td>
<td><strong>Autotune</strong>; ground cmd.</td>
<td>90%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>Conversion to spectra</td>
<td><strong>Onboard S/C</strong>; after downlink</td>
<td>40%</td>
<td>PDR</td>
<td>Low</td>
</tr>
<tr>
<td>Frequency of downlinked spectra</td>
<td>1 – 2000/day (<strong>24</strong>)</td>
<td>40%</td>
<td>PDR</td>
<td>Low</td>
</tr>
<tr>
<td>Control / measurement system</td>
<td>“plucked BIRD”; ISS-REM; custom; FitPix</td>
<td>20%</td>
<td>PDR</td>
<td>Various</td>
</tr>
<tr>
<td>Controlling processor</td>
<td>Dedicated; P/L; Bus</td>
<td>30%</td>
<td>PDR</td>
<td>Low</td>
</tr>
<tr>
<td>No. of LET spectrometers</td>
<td>1, 2, 3, 18</td>
<td>95%</td>
<td>MCR</td>
<td>--</td>
</tr>
<tr>
<td>TID sensor</td>
<td><strong>Teledyne uDOS001</strong>; Oxford RadFET</td>
<td>90%</td>
<td>MCR</td>
<td>High</td>
</tr>
<tr>
<td>No. of TID sensors</td>
<td>1, 2, 3</td>
<td>90%</td>
<td>MCR</td>
<td>--</td>
</tr>
<tr>
<td>SPE Trigger approach</td>
<td>LET; TID; uplink; <strong>all</strong></td>
<td>85%</td>
<td>MCR</td>
<td>Mod.</td>
</tr>
</tbody>
</table>

*TID = total integrated dose; LET = linear energy transfer; SPE = solar particle event*

*S/C = spacecraft
*P/L = payload*
Payload Key Interfaces

• **Payload to Biosentinel Bus: Power, C&DH**
  - also support Payload to ISS, GSE, other S/C bus configurations

• **Payload Power & Processor to Payload Subsystems**
  - Fluidic: pumps, valves, tubing, manifolds, fluidic cards, bags
  - Optical measurement: sources, detectors, fluidics card w/ filters, cells, dye
  - Thermal: heaters, $T$ sensors, fluidics card/biology
  - Sensors: RH, $p$, radiation TID, radiation LET

• **Payload Thermal**: balance, manage conductive vs. insulating links
  - Bio/fluidics to heaters
  - All P/L components & subsystems to containment vessel
  - P/L containment vessel to cables, S/C bus, structure

• **Payload Mechanical**: all of the above to hermetic containment vessel

• **Payload Subsystems to External Space Environment**
  - Biological & physical radiation sensors; thermal
Payload Key Analyses / Activities prior to PDR

- 95% of trades to \( \geq 75\% \); no trades < 60%
- Payload mechanical / thermal: integrate mech. & thermal models
- Payload processor & architecture defined
  - Payload S/W Build 1 > 50%
- Rad. spectrometer, rad. dosimeter selected
  - Rad spectrometer support electronics approach defined
  - Image-to-spectrum conversion: on-board vs. ground selected, S/W defined
- Fluidics: architecture defined
  - All fluidic components: lead candidate identified, tested
  - Autoclavable card confirmed by testing
  - Oxygenation approach defined & demo’d.
  - “Initial-aerobic” growth OK’d

- Optical measurement subsystem designed
- Flatsat complete, execute 1-card bio experiment
Payload Concerns & Mitigations

Fluidic Card & Subsystem
- Biocompatibility/stasis for various components: up to 24 months
  - Choose materials known to be compatible; minimize EtO sterilization
- Fluidic fill from dry state including yeast re-suspension
  - Good prelim. results; O/OREOS for spore experience; desiccant
- Adhesive (and other fluidics components): long-term stability: Test + Heritage
- Fluid exchange well-to-well uniformity: Flow rate, duty cycle; EcAMSat heritage
- Aeration: Dissolved O2 at laboratory concentrations + bubble trapping
- Evaporation / bubble formation: Design, bubble trapping, degassing, hermeticity
- Environment: 6 months at KSC w/out thermal control, including “sunbathing excursions”
  - Plenty of MLI on dispenser

Physical Radiation Measurement Subsystem
- Power consumption of LET spectrometer & supporting electronics
- Size of radiation sensor support electronics
- Data volume from LET spectrometer chips: Hourly binning by LET, 256 bins → 9 MB/yr

Payload Software
- Must start immediately. SporeSat base on which to build
## Payload/Instrument Top-Level Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>May</td>
</tr>
<tr>
<td><strong>Milestone</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload Table-Top Review</td>
<td></td>
<td>MCR/SRR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDR</td>
<td></td>
<td>CDR</td>
<td>System Integration Review</td>
<td>Ship to KSC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 status</td>
<td>Signed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 status</td>
<td>Prelim.</td>
<td>Signed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3 status</td>
<td>Draft</td>
<td>Prelim.</td>
<td>Signed</td>
<td></td>
</tr>
<tr>
<td>L4 status</td>
<td>Draft</td>
<td>Prelim.</td>
<td>Signed</td>
<td></td>
</tr>
<tr>
<td>L5 status</td>
<td>Draft</td>
<td>Prelim.</td>
<td>Signed</td>
<td></td>
</tr>
</tbody>
</table>

| System Qual. |      |      |      |      |
|              |      |      | Qualified |    |

<table>
<thead>
<tr>
<th>State of Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trades 50% complete</td>
</tr>
<tr>
<td>Trades 65% complete</td>
</tr>
<tr>
<td>Components defined</td>
</tr>
<tr>
<td>Interfaces defined</td>
</tr>
<tr>
<td>Flatsat demonstrated</td>
</tr>
<tr>
<td>CPU controls components</td>
</tr>
<tr>
<td>1st EDU complete</td>
</tr>
<tr>
<td>Qual Unit Complete</td>
</tr>
<tr>
<td>Flight Unit complete</td>
</tr>
<tr>
<td>Ground control samples loaded</td>
</tr>
</tbody>
</table>
Proposed LET Spectrometer Prelim. Requirements

**Objective:** Measure time-resolved LET of charged particles w/ solid-state device
- **Nominal LET range:** 0.2 to 300 keV/µm • 256 x 256 pixels, ≥ 14 bit depth
- **Target species:** H-1, He-4, C-12, O-16, Mg-24, Si-28, Fe-56
- **Detector volume:** 14 mm x 14 mm x 0.3 mm
- **Integration (“shutter”) time:** dynamic feedback, target frames ~ 3% full
- **Range of per-frame integration time:** 0.3 - 30 sec
- **Measurement duty cycle:** continuous over mission (up to 18 mo)
- **Power:** ≤ 1.5 W total power in active mode; ≤ 0.5 W dissipated on sensor chip
- **Voltage input:** 5-6 VDC
- **Size:** 1 cm x 2 cm x 6 cm up to 1 cm x 7 cm x 7 cm • **Mass:** ≤ 0.25 kg
- **S/W:** converts each "frame" to a binned tally of radiation events:
  - **256 bins** cover 0.2 to 300 keV/µm; **bit depth:** 32; **bin width** ~ 3% of center LET
  - **All frames per hour co-binned to provide one 256-bin hourly “spectrum” of LET events for onboard storage, downlink**
- **Sensor to S/C Bus Communication:** ethernet or serial (RS-422 preferred)
- **Data generated:** 9 MB/yr

*Onboard processor may be available to host data processing*