Enhanced Feasibility Assessment of Payload Adapters for NASA’s Space Launch System

Jon B. Holladay
Terry Sanders
David Alan Smith
• **Challenge**
 - Development of 8.4m diameter Space Launch System (SLS) requires new family of 8.4m Payload Adapters (PLA)
 - SLS PLAs need to accommodate unique requirements (relative to existing launch vehicles) including payload types, sizes, mass, and trajectories

• **Solution**
 - Iterative PLA design approach to optimize performance, reduce mass, increase potential model reusability

• **Approach**
 - Apply a Model Based System Engineering (MBSE) approach to managing data flow through PLA design-analyze-build process
AGENDA

• **Part 1**
 – Understand the unique payload accommodation requirements of SLS PLA
 – Establishes trade study constraints

• **Part 2**
 – Discuss results of NASA Engineering and Safety Center (NESC) - sponsored PLA MBSE pathfinder
 – Conclusions
 – Future Work
SLS BLOCK CONFIGURATIONS

SLS Block 1
>26t to TLI
(No Earlier than 2020)

SLS Block 1B
34 - 40t to TLI
(No Earlier than 2024)

SLS Block 2
>45t to TLI
(No Earlier than 2029)

OSA - Orion Stage Adapter
ICPS - Interim Cryogenic Propulsion Stage
PLF - Payload Fairing
EUS - Exploration Upper Stage
USA - Universal Stage Adapter
PPL - Primary Payload
CPL - Co-manifested Payload
SPL - Secondary Payload
SLS PAYLOAD MISSION CAPTURE

- **Lunar**
- **Mars**
- **Jupiter/Europa**
- **Saturn via JGA**
- **Saturn/Uranus/Neptune Direct**

Existing Expendable Launch Vehicles

*Based on publically available data

07-SEP-2018 Rev. 6

www.nasa.gov/sls
• **Shorter Transit Times to Destination**

• **Europa Clipper**
 – Desired launch date of June 2022
 – Jovian system transit time reduced by 65% over existing launch vehicles
 – Reduced mission operations cost over time

<table>
<thead>
<tr>
<th>Earliest Launch</th>
<th>Cruise:</th>
<th>Jupiter Orbit Insertion</th>
<th>Jovian System Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period: 6/4/22 - 6/24/22 (SLS)</td>
<td>2.5 Years (SLS)</td>
<td>12/24/24 or 5/1/25 (SLS)</td>
<td>Prime Europa Flyby Campaign: 36 months</td>
</tr>
</tbody>
</table>

Current LVs SLS

C3=15 km²/s²

2 Earth Flybys

C3=82 km²/s²

0 Earth Flybys

Earliest Launch

Cruise:

Jupiter Orbit Insertion

Jovian System Operations

SLS
• **Up to 5 times greater mass to orbit capability than current launch systems**
 – Increases payload mass margins
 – Offers range of injection propulsion options

• **New Horizons**
 – SLS would have doubled delivered payload mass to Pluto

• **Europa Lander**
 – 16 mT delivery to outer planets (with margin)
• **Up to 6 times greater volume available**

• **Multiple payload combinations**
 – Dual manifesting within fairing
 – Payload constellations
 – More powerful injection stages

• **Telescopes**
 – Larger payloads translate into simpler orbital operations (fewer deployments)
RANGE OF PAYLOAD ENCLOSURE

Conceptual

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>5.1m PLF</th>
<th>5.1m PLF</th>
<th>OSA</th>
<th>8.4m USA</th>
<th>8.4m USA PLF</th>
<th>8.4m PLF, Short</th>
<th>10m PLF, Short</th>
<th>8.4m PLF, Long</th>
<th>10m PLF Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload Type</td>
<td>5m PPL</td>
<td>5m PPL</td>
<td>5m SPL</td>
<td>8.4m CPL</td>
<td>8.4m PPL</td>
<td>8.4m PPL</td>
<td>10m PPL</td>
<td>8.4m PPL</td>
<td>10m PPL</td>
</tr>
<tr>
<td>Length</td>
<td>47.0 ft</td>
<td>62.7 ft</td>
<td>4.85 ft</td>
<td>32.8 ft</td>
<td>47.2 ft</td>
<td>62.7 ft</td>
<td>62.7 ft</td>
<td>90 ft</td>
<td>90 ft</td>
</tr>
<tr>
<td>Diameter</td>
<td>14.3 m</td>
<td>19.1 m</td>
<td>1.48 m</td>
<td>10.0 m</td>
<td>14.4 m</td>
<td>19.1 m</td>
<td>19.1 m</td>
<td>27.4 m</td>
<td>27.4 m</td>
</tr>
<tr>
<td>Diameter</td>
<td>16.7 ft</td>
<td>16.7 ft</td>
<td>17.7 ft</td>
<td>27.6 ft</td>
<td>27.6 ft</td>
<td>27.6 ft</td>
<td>33.0 ft</td>
<td>27.6 ft</td>
<td>33.0 ft</td>
</tr>
<tr>
<td>Diameter</td>
<td>5.1 m</td>
<td>5.1 m</td>
<td>5.4 m</td>
<td>8.4 m</td>
<td>8.4 m</td>
<td>8.4 m</td>
<td>10.0 m</td>
<td>8.4 m</td>
<td>10.0 m</td>
</tr>
<tr>
<td>Diameter</td>
<td>15.1 ft</td>
<td>15.1 ft</td>
<td>16.7 ft</td>
<td>24.6 ft</td>
<td>24.6 ft</td>
<td>24.6 ft</td>
<td>29.9 ft</td>
<td>24.6 ft</td>
<td>29.9 ft</td>
</tr>
<tr>
<td>Diameter</td>
<td>4.6 m</td>
<td>4.6 m</td>
<td>5.1 m</td>
<td>7.5 m</td>
<td>7.5 m</td>
<td>7.5 m</td>
<td>9.1 m</td>
<td>7.5 m</td>
<td>9.1 m</td>
</tr>
<tr>
<td>Available Volume</td>
<td>5,358 ft³</td>
<td>8,118 ft³</td>
<td>516 ft³</td>
<td>10,100 ft³</td>
<td>11,260 ft³</td>
<td>21,930 ft³</td>
<td>32,470 ft³</td>
<td>34,910 ft³</td>
<td>48,610 ft³</td>
</tr>
<tr>
<td>Available Volume</td>
<td>151.7 m³</td>
<td>229.9 m³</td>
<td>14.6 m³</td>
<td>286.0 m³</td>
<td>319 m³</td>
<td>621 m³</td>
<td>919 m³</td>
<td>988 m³</td>
<td>1,320 m³</td>
</tr>
<tr>
<td>Potential Availability</td>
<td>COTS</td>
<td>COTS</td>
<td>2020</td>
<td>2024</td>
<td>2025</td>
<td>2025</td>
<td>2029</td>
<td>2029</td>
<td>2029</td>
</tr>
</tbody>
</table>

COTS: Commercial Off-the-Shelf CPL: Co-manned Payload OSA: Orion Stage Adapter PPL: Primary Payload
SPL: Secondary Payload PLF: Payload Fairing
SLS 8.4m PLA CONCEPT

Payload Adapter (PLA)

PAF Outer Surface

27U Secondary Payload & Deployment System

Secondary Payloads Support Structure (Bolted to Inserts in PAF)

Camera

Cable Harnesses

Vent Valves

Utilities Feed Through plate

12U Secondary Payload & Deployment System

Secondary Payloads Support Structure (Bolted to Inserts in PAF)

Camera

USA/PLF I/F

EUS I/F

Secondary Payload Deployment Sequencer/Battery
• Gather stakeholder requirements from existing documents and COTS specifications

• Develop User Interface (UI) to capture PLA accommodation attributes, such as payload destination, mass, width, height, potential loads, etc.

• Requirements and user data represented as a CAD model
 – Needed updates to PLA design will be by parameter modifications
 – Loads/stress analyses made within CAD modeling function
 – Results are exported along with any parameter updates into a SysML MagicDraw model

• Model verification will indicate that requirements were successfully verified and which were not
Pathfinder Findings

- Benefits:
 - Outward facing GUI for capture of SLS payloads
 - Automated concept design of PL integrated to SLS
 - Demonstrated MBSE to MBE for design and mfg.
 - Minimizes error from manual steps in integration
 - Matures design to higher fidelity quickly

- Next Step: Develop front-end SLS user interface within existing SLS Mission Planners Guide

Technical Challenge

SLS engineering resources insufficient to evaluate 10’s-100’s of optimized PL adapter options for SLS users over life of program

MBSE Challenge

Develop User Interface to feed MagicDraw parameters into CAD/analytical model and verify requirements were met by PL adapter concept
• NASA is moving toward more digitally integrated solutions that span life-cycle from concept to manufacturing

• Unique scale of SLS and associated payload accommodation options benefits from a MBSE PLA approach
 – Partial “automation” of analysis cycle provides analysts with a 75% fidelity answer at the beginning of their detailed analysis
 – Allows potential users to “self analyze” accommodation feasibility on SLS sooner
 – Provides SLS with enough fidelity to determine feasibility of optimizing payload complement sooner
 • Insight into whether existing PLA design is sufficient or use of new design is worth performance enhancement investment
 • Ability to accommodate single payload or fly multiples on one mission
 • Opportunity to trade performance to destination for different payloads
FUTURE WORK

• Compare MBSE finding to the full range of NASA missions ranging from Super Heavy to Sounding Rocket launch vehicles as well as Habitat to Nanosat spacecraft.

• Understand where MBSE provides the biggest return soonest
 – Determine where models and data can flow most easily and efficiently
 – Application should include internally to a launch vehicle or spacecraft as well as externally across a range of launch vehicle and spacecraft delivery providers.

• Ultimate goal is more detailed design/analysis improvements earlier resulting in less re-work across not only physical interfaces, but the entire federated infrastructure.