Atmospheric correction for coastal waters based on multi-angle polarimetric observations

Meng Gao¹, Peng-wang Zhai², Bryan Franz³, Yongxiang Hu³, Kirk Knobelspiese¹, P. Jeremy Werdell⁴, Amir Ibrahim⁵, Brian Cairns⁴, Alison Chase⁵

¹NASA Goddard Space Flight Center, ²JICT, Physics Department, University of Maryland, Baltimore County, USA
³NASA Langley Research Center, ⁴NASA Goddard Institute for Space Studies, ⁵School of Marine Sciences, University of Maine, USA

Background

- Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean.
- It is challenging to retrieve water leaving signals over coastal waters due to:
 - Complex water properties: non-zero NIR signals, etc
 - Complex aerosol properties: absorption, etc
- Improvement can be achieved through NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission with:
 - Hyperspectral ocean color instrument (OCI);
 - Polarimeters: HARP-2 (UMBC), SPEXone (SRON)
- We present a joint retrieval algorithm that determines the aerosol optical properties and the water leaving signals simultaneously based on polarimetric measurements. The retrieved aerosol properties can assist the atmospheric correction for OCI.

Algorithm Design

Coupled Atmosphere and Ocean Model

Aerosol refractive index
- PCA for Real & imag. spectra
- PCA + adjustment
- Aerosol volume distribution
- Represented by six sub-modes

Wind speed

\[\sigma_{ph} = A_{ph}(\lambda)\cdot \text{Chla} \cdot r_{ph}(\lambda) \]
\[\sigma_{bg} = \sigma_{bg}(440) \cdot \exp \left(-S_{bg}(\lambda - 440) \right) \]
\[B_{tp} = B_{tp}(660)(\lambda/660) - S_{tp} \]
\[B_{pp} = B_{pp}(660)(\lambda/660) - S_{pp} \]

Joint Retrieval for Open and Coastal Waters

- Four test sites are selected with collocated polarimetric measurements from the Research Scanning Polarimeter (RSP) and in situ measurements from SABOR(2014), NAAMES(2015/2016) field campaigns.

Comparison of measurement and simulation

- Comparison example between RSP measurement (solid line) and simulation (dashed line) on reflectance and polarized reflectance from NAAMES-Open case on 05/26/2016.

Aerosol Optical Depth and Remote Sensing Reflectance Retrieval

Aerosol optical depth (AOD) retrieval

Remote sensing reflectance retrieval

Atmospheric Correction along RSP Flight Track

The joint retrieval is applied along a RSP flight track over NAAMES-Coastal case.

Retrieval Uncertainties and PACE Atmospheric Correction Requirement

Conclusions

- A joint retrieval algorithm for water leaving signals and aerosol properties is developed for a coupled atmosphere and ocean system over open and coastal waters.
- The aerosol optical depth is accurately retrieved as comparing with HSRL and AERONET aerosol product. The retrieved water leaving signals are compared with in situ measurement, and the MODIS Ocean Color product with high accuracy.
- The retrieved aerosol properties might be used for the atmospheric correction on hyperspectral ocean color instruments.

References