Uncooled Doped-Si Thermopiles for Thermal Land Imaging Applications

Emily M. Barrentine, Ari D. Brown, Carl Kotecki, Vilem Mikula, Riley A. Reid, Sang Yoon, and Alicia T. Joseph

aNASA Goddard Space Flight Center, Greenbelt, MD, USA
bAmerican University, Washington, DC, USA
cNorth Carolina State University, Raleigh, NC, USA
dScience Systems And Applications Inc., Lanham, MD, USA

ABSTRACT
Sustained and enhanced land imaging is crucial for providing high-quality science data on change in land use, forest health, environment, and climate. Future thermal land imaging instruments operating in the 10-12 micron band will provide essential information for furthering our hydrologic understanding at scales of human influence, and producing field-scale moisture information through accurate retrievals of evapotranspiration (ET). To address the need for cost-effective future thermal land imaging missions we are developing novel uncooled doped-silicon thermopile detectors, an extension of a detector design concept originally developed at NASA-Goddard for planetary science applications. These doped-Si thermopile detectors have the potential to offer superior performance in terms of sensitivity, speed, and customization, when compared to current commercial-off-the-shelf uncooled detector technologies. Because cryocooler technology does not need to be fielded on the instrument, these and other uncooled detectors offer the benefit of greatly reduced instrument cost, mass, and power at the expense of some acceptable loss in detector sensitivity. We present the motivation for an uncooled thermal imaging instrument, our doped-Si thermopile detector concept, and performance expectations and comparisons. We also provide an update on the current status of this detector technology development.

Keywords: thermopiles, infrared detectors, thermal detectors, silicon

1. INTRODUCTION
Across the U.S. and globally there are ever increasing and competing demands for freshwater resources for use in agricultural production, ecosystems services and urban development. Recent studies using the Gravity Recovery and Climate Experiment (GRACE) satellite have identified severely stressed global aquifers which are being unsustainably depleted due to over-extraction, primarily in support of irrigated agriculture. Extended droughts in the western and southeastern U.S. over the past decade have also exacerbated water limitations in stressed basins, provoking water wars between neighboring states. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth’s growing population into the future, there is a critical need for robust assessments of water use and of evapotranspiration (ET) at the scale of anthropogenic activity.

Water lost to the atmosphere through ET (primarily through soil evaporation and vegetation canopy transpiration in agricultural systems) serves to cool the Earth’s surface. Thus measurements of the Land Surface Temperature (LST) derived from remote-sensing data in the thermal infrared band at ~10-12 microns provides critical science information about the ET process and water use. The ability to map ET and moisture availability via satellite has broad applications: in monitoring drought and consumptive water use, administering irrigation projects, predicting local and regional water demand, and providing important boundary conditions to hydrological and weather forecast models. Given current trends in population growth and climate, accurate monitoring of the Earth’s freshwater resources at field to global scales is increasingly critical.

Further author information:
E.M.B.: E-mail: emily.m.barrentine@nasa.gov, Telephone: 1 301 286 9501
NASA and the U.S. Geological Survey’s next thermal land imaging instrument, the Thermal Infrared Sensor-2 (TIRS-2) instrument on Landsat-9, is scheduled to launch in 2020 and will feature GaAs Quantum Well Infrared Photodetectors (QWIPs) arrays, the same detector technology used on the Thermal Infrared Sensor (TIRS) instrument on Landsat-8. Like TIRS, the TIRS-2 telescope will operate at a \(\sim 180 \) K temperature in order to reduce thermal background loading, achieved by passive radiative cooling of the instrument. However, to achieve their performance, the QWIPs detector arrays are further cooled to \(\sim 40 \) K using a complex 2-stage cryocooler, and a second passive radiator is required to dissipate the heat generated by this cryocooler.

In considering the future direction of detector technology for thermal land imaging, an opportunity exists for high-performance uncooled detector technology that could provide a more cost-effective instrument design by not requiring cryocooling. Uncooled detectors open up the possibility of future thermal land imaging instruments to be fielded on board low-cost platforms, for example, CubeSats. In addition, they could allow future thermal land imaging instruments to capitalize on the greater number of launch opportunities, such as those available under the Evolved Expendable Launch Vehicles (EELV) program. With this motivation in mind, we are developing novel uncooled thermopile detectors based on doped-Si material. We present here a high-level overview of our doped-Si thermopile detector design concept for these applications, and compare the potential performance of this technology with the TIRS thermal land imaging instrument requirements and other commercial or space-flight uncooled detector technologies. We also report on the current status of this detector technology development at NASA-Goddard.

2. DOPED-SI THERMOPILE DESIGN CONCEPT

A thermopile is a detector that uses the thermoelectric Seebeck effect, in which a voltage difference, \(\Delta V \) arises across a material in response to a temperature difference, \(\Delta T \). In a thermopile, incoming radiant power is absorbed in the form of heat in a thermally-isolated absorbing region. Thermal isolation structures, which consist of p- or n-type metallic or semi-conductor materials in series, respond to the incoming radiant power and the resulting temperature differential with a voltage output. For a given material and operating temperature the material’s intrinsic voltage response can be quantified by a Seebeck coefficient, \(\alpha [V/K] \), where \(\Delta V = \alpha \Delta T \). Thermopile detectors are passive detectors, with no bias power required for read out and no cryogenics required for cooling.

The response of an individual thermopile detector to optical power at zero frequency is defined as the detector’s optical responsivity \(S = \eta n (\alpha_n + \alpha_p)/G [V/W] \). Here \(\eta \) is the optical efficiency of the absorber, \(\alpha_n \) and \(\alpha_p \) are the Seebeck coefficients of the n- or p-type legs respectively, and \(n \) is the number of thermocouples in the detector. A thermocouple consists of one n-type and one p-type junction in series across the thermally isolated absorber region. \(G \) is the total thermal conductance of the thermal path from the hot thermally-isolated absorber region to a colder heat sink. Contributions to this thermal conductance include the conductance along the isolation structures, and via radiation and exchange gas, which also carry away heat. The conductance via exchange gas is minimal if the detectors are operated in vacuum. Like other thermal detectors, the response time of the thermopile to an optical signal is limited by the thermal time constant of the detector system \(\tau = C/G \) where \(C \) is the total heat capacity of the absorber, membrane and parasitic contributions from the thermal isolation legs. The detector sensitivity can also be characterized by a specific detectivity, \(D^* = \sqrt{A \Delta f} / NEP [cm \sqrt{Hz}/W] \), where \(A \) is the absorbing area, \(\Delta f \) is the electrical bandwidth and NEP is the Noise Equivalent Power \([W/\sqrt{Hz}]\). For typical thermopile designs, the detector noise is dominated by the Johnson noise across the resistive thermoelectric isolation structures, \(NEP_{Johnson} = \sqrt{k_B RT}/S \), where \(k_B \) is the Boltzmann constant, \(R \) is the total resistance in the electrical path across all the thermocouple junctions and \(T \) is the operating temperature. Sub-dominant contributions to noise arise due to thermal fluctuation noise across the thermal isolation path and photon noise due to statistical fluctuations in the arrival rate of photons at the absorber. \(D^* \) or NEP and the detector speed, limited by \(\tau \), are both important performance parameters to consider for thermal land imaging applications. For thermopiles, like other thermal detectors, here there is a fundamental design trade off for a given design. Reducing \(G \), and therefore reducing NEP and increasing \(D^* \), comes at the expense of slowing the detector’s thermal time constant. Note that detector array sensitivity can also be quantified in terms of a noise-equivalent temperature differential, NETD, where the NETD depends not just on the detector and readout...
performance and parameters, but also on the optical system and the temperature and emissivity of the blackbody source being observed.

To date, all of the thermopile detectors and detector arrays flown on space missions have been Bi-Sb/Bi-Te or Bi-Sb based (see Table 1). We are motivated to use doped-Si structures in our thermopile design because the material’s Seebeck coefficient can be engineered to be more than an order of magnitude higher than these more commonly used Bi-Sb or Bi-Te materials. Si also has the advantage of being an exceedingly strong, lightweight, and thermally robust material. Silicon is also compatible with standard semiconductor processing techniques, allowing for greater customization possibilities, and accommodation of a variety of absorber designs. Our doped-Si thermopile detector design is based on a design concept originally developed for planetary science applications at NASA-Goddard and also builds on other previous efforts to develop Si thermopile detectors.

2.1 Thermoelectric Design Considerations & Material Properties

An important aspect of thermopile detector design is optimizing the properties of the thermoelectrically sensitive material, which are functions of both the n- and p-type dopant concentrations, the isolation structure geometry, and the operating temperature. The well-known metric for optimizing a material for use in specific thermopile designs is the thermoelectric figure of merit, \(Z = \frac{\alpha^2}{\rho \kappa} \). Here \(\alpha \) is the previously defined Seebeck coefficient, \(\rho \) is the electrical resistivity, and \(\kappa \) is the thermal conductivity of the p- or n-type thermoelectric material. A material with maximum \(Z \) will result in maximum thermopile signal-to-noise for a given design approach. It should be noted that the values of \(\alpha \), \(\rho \), and \(\kappa \) in doped-Si arise from a combination of physical effects within and between the charge-carrier and phonon systems, and are not independent.

As can be seen from the thermoelectric figure of merit, a material with low thermal conductivity provides optimal detector signal-to-noise. Until more recently, the relatively high thermal conductivity of Si has been one limitation to the implementation of this material in high-performance thermoelectric detectors and devices. However, advances in Si microfabrication and micromachining techniques mean that this is no longer the case. In our thermopile design (see Figure 1), the absorbing membrane region and thermal isolation legs consist of \(\leq 1 \) micron thick single-crystal Si, with the thermal isolation legs consisting of p-type and n-type Si. These membrane and thermal isolations legs are fabricated from the device layer of a Silicon-on-Insulator (SOI) wafer. A large decrease in the thermal conductivity is observed in this thickness regime due primarily to phonon-boundary scattering effects. It is also possible to integrate nano-scale perforations into these Si structures, which has been shown to further reduce thermal conductivity by more than an order of magnitude.

![Figure 1](image.png)

Figure 1. Cartoon cross-section of our doped-Si thermopile design which features a Si membrane with absorber and thermal isolation legs of n- or p-type, which thermally isolate the membrane from the silicon substrate.

If we do consider the thermoelectric figure of merit independent of thermal conductivity it is reduced to \(Z_{\text{reduced}} = \frac{\alpha^2}{\rho} \). Insofar as the thermal conductivity of the material is dominated by phonon-properties and the Seebeck response of the charge-carriers can be separated from phonon effects (i.e neglecting the phonon-drag effect), it is useful to examine this reduced figure of merit for Si as a function of dopant concentration and operating temperature. An example of this is shown in Figure 2 where this reduced figure of merit is calculated from measurements of Seebeck coefficient and electrical resistivity and plotted as a function of electrical resistivity. The plot includes samples from the literature, as well as our own measurements of thin Si samples. Our samples
N−type α (µV / K)

Figure 2. (Right) The measured Seebeck coefficient of p-type doped silicon as a function of dopant concentrations at room temperature. (Left) The measured p-type doped silicon reduced figure of merit, \(Z_{\text{reduced}} \), as a function of electrical resistivity at room temperature. Included are measurements of bulk samples by Geballe et al. & Morin et al.,
bulk samples by Yamashita et al.,
1 micron thick samples by Allison et al.,
2-10 micron thick samples by Kerkhoff et al.,
200 nm thick samples by Liao et al.,
and our own 450 nm thick samples. Our measurements only indicate lower limits due to a systematic uncertainty in the interface resistance between the sample and substrate in our test setup, and we plan to carry out more robust measurements in the near future (see Sect. 4). Note this reduced thermoelectric figure of merit only includes contributions from electrical resistivity and Seebeck effects and for proper optimization the thermal conductivity also needs to be evaluated.

2.2 Potential Detector Performance & Comparison

Custom designed state-of-the-art uncooled thermopiles have flown on several space flight instruments including the Mariner,
Voyager,
Cassini,
LRO,
MROand BepiColombo missions, and are in consideration for future space-flight mission concepts.
They are also commercially available from several vendors.
The state-of-the-art in thermopile linear arrays has demonstrated pixel sizes \(\sim 70-500 \) microns, and specific detectivity \(D^* \sim 3 \times 10^8 \) - \(2 \times 10^9 \) cm \(\sqrt{Hz/W} \) for respective time constants, \(\tau \sim 2-300 \) ms (see Table 1).

Another competitive uncooled detector technology, which has developed a large commercial and defense presence, are uncooled vanadium oxide (VO\(_x\)) or amorphous Si (a-Si) microbolometer arrays. The best performance commercial uncooled microbolometer arrays, with pixel size \(\sim 25-35 \) microns, obtain NETD \(\sim 10-20 \) mK and \(\tau \sim 5-20 \) ms (see Table 2). Commercial microbolometer detectors have space-flight heritage in the THEMIS, BepiColumbo, SAC-D/Aquarius and Akatsuki missions. Microbolometer detector technology is also planned, or in consideration, for deployment in multiple future space-flight missions.

In these space-flight
Figure 3. Example of the optimization of Si dopant concentration to achieve maximum thermoelectric performance based on bulk Si measurements by Geballe et al. & Morin et al.17, 18 at temperatures from 170 to 300 K. Optimal concentrations of \(\sim 10^{17} - 10^{18} \text{ cm}^{-3} \) give maximum figure of merit in these temperature regimes. Note that this reduced thermoelectric figure of merit only includes contributions from electrical resistivity and Seebeck effects and for proper optimization the thermal conductivity also needs to be evaluated.

Table 1. Comparison of potential doped-Si array designs to the best performance commercially available thermopiles, or those with space-flight heritage. Our design has the potential to achieve improved detector performance by a factor of \(\sim 10 \) in sensitivity (\(D^* \)) for a similar thermal time constant. Note that a broader comparison and discussion of the performance of the current state-of-the-art in thermopile technology can be found elsewhere in the literature, for example, Dillner et al.37

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Space Mission</th>
<th>Material</th>
<th>Pixel Size [(\mu \text{m})]</th>
<th>(D^*) [cm (\sqrt{Hz/W})]</th>
<th>(\tau) [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-JPL28, 38</td>
<td>LRO, MCS</td>
<td>BiSbTe/BiTe</td>
<td>70-480</td>
<td>(3 \times 10^8 - 1.4 \times 10^9)</td>
<td>2.99</td>
</tr>
<tr>
<td>IPHT29, 39</td>
<td>BepiColombo</td>
<td>BiSb/Sb</td>
<td>200-450</td>
<td>(1.3-1.6 \times 10^9)</td>
<td>150-300</td>
</tr>
<tr>
<td>NASA-GSFC Future Si</td>
<td>~25</td>
<td>~2-6 \times 10^9</td>
<td>~5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cases, customization of commercial designs, as well validation in relevant environments, is often required to meet specific science and instrument requirements.

Based on measured material properties (see Section 2.1) our doped-Si thermopile design has the potential to meet or exceed the performance of these current state-of-the-art uncooled thermopiles and microbolometers (see Tables 1 and 2), while offering a robust and customizable design. In addition, although the performance of cooled detectors, such as QWIPs will always offer superior performance, our doped-Si design has the potential to nearly meet or exceed NETD requirements (see Table 3) for current thermal imaging instrument designs which employ these cooled detectors, such as TIRS.

3. PROTOTYPE DETECTOR ARRAYS

We are currently exploring doped-Si detector designs with a range of pixel sizes and thermal isolation geometries, and fabrication of prototype single-pixel and linear arrays is in progress. Figure 4 shows an optical image of a prototype 1 \times 64 doped-Si thermopile linear array, which features a 25 micron-size pixel size, comparable to the TIRS QWIPs array pixel size. Pushbroom instruments such as TIRS, as well as scanners such as the Ocean Color Instrument (OCI), only require a single row of detector pixels. Therefore, we are currently only exploring linear array architectures. Optical characterization of these first prototype doped-Si detector pixels and linear arrays is anticipated over the next few months.
Table 2. Comparison of potential doped-Si array designs to the best performance commercially available uncooled microbolometers or those with space-flight heritage. Our design has the potential to achieve detector performance comparable to, or a factor of 2 better in sensitivity (NETD) for similar thermal time constants (τ). Here NETD assumes an 8-12 micron optical band, 30 Hz, f/1 optics, observing a 300 K blackbody. Note that a broader comparison and discussion of the performance of the current state-of-the-art in commercial IR microbolometer technology can be found elsewhere in the literature, for example, in A. Rogalski or Skidmore et al.

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Space Mission</th>
<th>Material</th>
<th>Pixel Size [µm]</th>
<th>NETD [mK]</th>
<th>τ [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCD</td>
<td>-</td>
<td>VOx</td>
<td>25</td>
<td>15</td>
<td>≤20</td>
</tr>
<tr>
<td>INO</td>
<td>SAC-D/Aquarius</td>
<td>VOx</td>
<td>35</td>
<td>5-14</td>
<td>20-13</td>
</tr>
<tr>
<td>ULIS</td>
<td>BepiColumbo</td>
<td>α-Si</td>
<td>35</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>NASA-GSFC</td>
<td>Future</td>
<td>Si</td>
<td>~25</td>
<td>8-20</td>
<td>~5</td>
</tr>
</tbody>
</table>

Table 3. Comparison of potential performance of doped-Si thermopiles to the TIRS instrument requirements. Though cooled QWIPs offer superior detector performance, the TIRS instrument is limited in sensitivity by other instrument noise sources above the QWIPs detector noise level. For NETD estimates we have assumed the TIRS instrument design with a 10.5 - 11.5 micron band, 90 Hz, f/1.64 optics, observing a 300 K blackbody.

<table>
<thead>
<tr>
<th></th>
<th>Pixel Size [µm]</th>
<th>NETD [mK]</th>
<th>τ [ms]</th>
<th>Operating Temperature [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>QWIPS4</td>
<td>25</td>
<td>15</td>
<td><5</td>
<td>43</td>
</tr>
<tr>
<td>Doped-Si Thermopiles</td>
<td>~25</td>
<td>160-420</td>
<td>~5</td>
<td>170-300</td>
</tr>
<tr>
<td>TIRS Instrument Requirement4</td>
<td>25</td>
<td>330</td>
<td><5</td>
<td>-</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS & FUTURE WORK

We have presented an uncooled doped-Si thermopile detector concept for thermal land imaging applications which offers the potential to improve the performance and the ability for customization of state-of-the-art thermopile detector technology. Such uncooled detectors would reduce thermal land imaging instrument costs and open up new instrument platforms, since no complex cryocooler technology is required. We are currently fabricating prototype doped-Si detector arrays and plan to carry out optical characterization of these detectors (measuring optical responsivity, detector time constant, and noise) to confirm our detector design model. In addition, we are fabricating membrane-isolated thermoelectric diagnostic structures to more robustly measure the Seebeck effect in thin doped-Si structures as a function of dopant concentration. Further consideration of high-efficiency absorber designs and array readout schemes for these detectors is also planned.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding support for this work provided by the NASA Goddard Space Flight Center Internal Research and Development Program and by the NASA Earth Science Technology Office. The significant input and contributions from Brook Lakew and Shahid Aslam during the original development of this detector design concept, as well as support from Brendan Bramman, Steve Cagiano, Nicholas Costen and Bing Guan in the setup of the doped-Si materials characterization effort, are also gratefully acknowledged.

REFERENCES

Figure 4. Optical image of a prototype 1×64 doped-Si thermopile linear array with a 25 micron pixel size.

