Calibration Program for the Ocean Color Instrument (OCI) on the Plankton, Aerosol, and Cloud ocean Ecosystem (PACE) mission

Gerhard Meister, PACE Instrument Scientist, NASA Code 616

IOCS 2019
International Ocean Color Science Meeting
Busan, South Korea, April 11 2019
OCI calibration overview

- The basic product measured by OCI is the top-of atmosphere (TOA) radiance at different wavelengths

- Three types of calibration/characterization are necessary for ocean color processing:
 - Prelaunch calibration/characterization (absolute/spectral calibration and image artifacts)
 - On-orbit calibration (solar diffuser and lunar measurements)
 - Vicarious calibration (in-situ measurements of water-leaving radiance)
OCI Calibration Overview

<table>
<thead>
<tr>
<th>Artifact</th>
<th>Measured Prelaunch</th>
<th>Measured Postlaunch</th>
<th>Applied during L1 processing</th>
<th>Applied during L2 processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute gain (K1)</td>
<td>Instrument level, TVAC</td>
<td>Solar calibration and vicarious calibration<sup>1</sup></td>
<td>Yes (calibration equation)</td>
<td></td>
</tr>
<tr>
<td>Temporal response (K2)</td>
<td>Instrument level, reduced accuracy</td>
<td>Solar and lunar calibration</td>
<td>Yes (calibration equation)</td>
<td></td>
</tr>
<tr>
<td>Temperature correction (K3)</td>
<td>Instrument level, TVAC</td>
<td>Solar and lunar calibration<sup>2</sup></td>
<td>Yes (calibration equation)</td>
<td></td>
</tr>
<tr>
<td>Response vs. scan angle (RVS) (K4)</td>
<td>Instrument level, ambient</td>
<td>Verification with ocean color products</td>
<td>Yes (calibration equation)</td>
<td></td>
</tr>
<tr>
<td>Linearity (K5)</td>
<td>Instrument level, TVAC</td>
<td>Solar calibration<sup>3</sup></td>
<td>Yes (calibration equation)</td>
<td></td>
</tr>
<tr>
<td>Tilt angle (K6)</td>
<td>Spacecraft level (verification only)</td>
<td>Verification with ocean color products</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Polarization sensitivity</td>
<td>Instrument level, ambient</td>
<td>Verification with ocean color products</td>
<td></td>
<td>Yes (atmospheric polarization)</td>
</tr>
<tr>
<td>Stray light sensitivity</td>
<td>Instrument level, ambient</td>
<td>Verification with lunar cal.</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>Instrument level, ambient</td>
<td>Verification with lunar cal.</td>
<td>Maybe</td>
<td>Yes</td>
</tr>
<tr>
<td>Relative spectral response</td>
<td>Instrument level, TVAC</td>
<td>Verification with solar calibration (Fraunhofer and atm. abs. lines)</td>
<td>N/A (part of K1 calculation)</td>
<td>Yes (atmospheric correction)</td>
</tr>
<tr>
<td>Offset (DN0)</td>
<td>Every scan</td>
<td>Every scan</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

¹Vic. Cal.: Visible and some NIR bands only

²If seasonal variations are observed in K2

³New technique developed for OCI (dim diffuser)
Ground support equipment: 20inch integrating sphere (8inch exit aperture)

Attachments:

Various light sources
(halogen, plasma, EQ-400, attenuators)

and sensors
(SR4500, Ocean Optics, FRMS,
Filter wheel (Si and InGaAs))

All light sources will be calibrated by NASA GSFC Code 618 Calibration Facility.

Red labels indicate sphere ports.
OCI Solar Calibration Assembly

Preliminary design drawings

3 diffuser surfaces: 2 QVD (daily/monthly gain tracking) and 1 dim diffuser (linearity)

Linearity: hyperspectral CCDs accumulate several readout cycles (dim solar diffuser reflectance is lowest radiance, upper limit is saturation)
Calibration Equation for each channel

\[L_m = K_1 \cdot K_2(t) \cdot (1 - K_3 \cdot (T - T_{ref})) \cdot K_4(\theta) \cdot K_5(dn, T) \cdot K_6(\omega) \cdot dn \]

- \(L_m \) = radiance measured in a hyperspectral or SWIR band
- \(K_1 \) = absolute gain factor
- \(K_2(t) \) = relative gain factor as a function of time \(t \)
- \(K_3 \) = temperature correction factor
- \(T \) = Instrument temperature measured at relevant location (electronics? housing? T.b.d.)
- \(T_{ref} \) = Reference Temperature (used during TVAC prelaunch characterization, close to expected on-orbit temperature)
- \(K_4 \) = response versus scan
- \(\theta \) = scan angle (usually replaced by science pixel number per scan)
- \(K_5 \) = nonlinearity factor
- \(K_6(\omega) \) = correction for tilt position \(\omega \) (± 20°)
- \(DN \) = digital number measured at a certain \(\theta \)
- \(DN_0 \) = average of the digital numbers measured during dark current collection (average of ~40 numbers, once per scan)
- \(dn = DN - DN_0 \)

Note: out-of-band, polarization and straylight/crosstalk correction are handled later in the processing stage (need other information, such as surrounding radiances for straylight, amount of rayleigh/aerosol/glint for polarization)
Absolute calibration K_1: 3 uncertainties

$$L_m = K_1 \times K_2(t) \times (1-K_3*(T-T_{ref})) \times K_4(\theta) \times K_5(dn, T) \times K_6(\omega) \times dn$$

• K_1 is a single number per band and mirror side, with units [radiance/dn]
• Prelaunch: GLAMR will provide absolute calibration, better than 0.5% accuracy
• Initial on-orbit calibration: solar diffuser will provide absolute calibration with <2% uncertainty
• Vicarious calibration will provide absolute calibration for most bands with 0.1% uncertainty after sufficient number of matchups have been acquired
Temporal calibration K_2

\[L_m = K_1 \times K_2(t) \times (1 - K_3(T - T_{\text{ref}})) \times K_4(\theta) \times K_5(\text{dn, } T) \times K_6(\omega) \times \text{dn} \]

- Daily solar diffuser measurements will provide temporal trending
- A function of time (e.g. exponential, polynomial) will be fitted to the daily measurements
- A monthly solar diffuser (limited exposure) will provide correction to degradation of reflectance of daily solar diffuser
- After more than 2 years, lunar measurements will be used for temporal trending
- K_2 uncertainty achieved with SeaWiFS lunar measurements: 0.13% (Eplee et al., Applied Optics, Vol. 51, Issue 36, 2012)
- K_2 uncertainty allocation for OCI: 0.17%
Linearity correction K_5

$$L_m = K_1 \cdot K_2(t) \cdot (1-K_3(T-T_{ref})) \cdot K_4(\theta) \cdot K_5(dn, T) \cdot K_6(\omega) \cdot dn$$

- A monthly solar diffuser (dim target with reflectance of about 2%) will provide linearity correction via special OCI mode.
- OCI can hold charge for several cycles, testing the linearity of the electronics (not the detectors).
- Linearity will be evaluated at multiples of 2% in reflectance (2%, 4%, 6%,..., 100%).
Solar Diffuser Reflectance Degradation

• The monthly solar diffuser (limited exposure) will provide correction to degradation of reflectance of daily solar diffuser, but it will degrade as well
• The degradation pattern of the daily solar diffuser will be used to model the degradation of the monthly solar diffuser (heritage: MERIS, ozone instruments (OMI))
• If the degradation of the monthly solar diffuser is smaller than 0.6% over the mission life (or 2 years), an uncertainty of 0.1% can be achieved with the solar diffuser measurements alone (Meister, On-orbit trending of solar diffuser reflectance, PACE memo, 2017)
• Expected degradation for Quartz-Volume Diffuser: 0.15% (worst wavelength (350nm), based on on-orbit data from OMI/Aura)
• Daily solar diffuser will be used to monitor short term changes.

Expected degradation at 350nm: 6.7%
Lunar Calibration

Lunar calibration background:

- Stable exo-atmospheric radiometric source with light levels comparable to TOA Earth observations.
- Moon used as reference by SeaWiFS, MODIS (2), and VIIRS.
- Observations require geometric correction for instrument-Moon and Sun-Moon distances, phase angle, libration angles.
- Frequency of observation: Twice per month (before and after full phase) over a limited range of phase angles (7deg +/- 0.5deg).

Limitations:
- Will require image oversampling correction.
- Inherent scatter in observations (1-2%).
- Multi-year time series required to identify radiometric trends.

Geometric corrections:

- Complication: Heterogeneous albedo distribution over the lunar surface
- Corrections provided by USGS ROLO Lunar Photometric Model
- ROLO Model used as reference by most Earth-observing instruments
Summary

• OCI will start a rigorous calibration program in June 2019 with the ETU (Flight Unit: summer 2020)
• Goal is to minimize uncertainties due to image artifacts described here in order to achieve overall radiometric uncertainty of 0.5% (excluding absolute calibration)
• OCI will provide excellent temporal stability over mission life time (2 solar diffusers, lunar measurements twice a month)
• Linearity will be verified on-orbit with dim solar diffuser (new approach)