The TechEdSat-N Series: A Collaborative Technology Development Platform in the Nano-Satellite Form Factor

M. S. Murbach¹, A. Guarneros¹, R. Alena¹, P. Papadopoulos,², Tanner,¹ J. Wheless¹ S. Smith,¹ A. Salas¹ N. Williams,²

¹ NASA Ames Research Center, Moffett Field, CA 94035, ² San Jose State University, Aeronautical Engineering Department, One Washington Square, San Jose, CA, 95192, ³

The TechEdSat-1 was the first U.S. cubesat to be deployed from the ISS. This permitted the initiation of a flight series that has recently de-orbited the 6th nano-satellite with subsequent numbers 7-10 under development. The nano-satellites range from 1U to 6U (TechEdSat-8) but have the critical ISS Safety design features standardized in order to focus on the particular experiment objectives. Incremental experimental development has included unique communication subsystems such as command/control of the nanosatellite through email commands as well as a recent record for Wifi transmission. Also, the thermophysics of controlled drag devices (Exo-Brake) has been developed which will prelude sample return and planetary exploration applications. The successful ‘rapid incremental experiment’ approach has also been incorporated into collaborations with academia, permitting professors/student interns to be exposed to the rigors of space mission hardware design and execution. The TechEdSat-8, a linear 6U configuration, allows for 5 different groups to contribute an ‘experiment, sensor, or sub-system’ through a well-defined common interface. Lastly, the flying laboratory concept is helpful in developing future interplanetary nano-satellite subsystems which will advance exploration goals by allowing rapid demonstration/validation first in LEO.

![Image of TechEdSat-N Series satellites]