Theoretical study of production of light and intermediate mass fragments from interaction of GCR-LIKE particles

Mohammad S Sabra
USRA STI / NASA-MSFC
msabra@usra.edu
APS April Meeting April 13-16, 2019, Denver, CO
Introduction

• Galactic cosmic rays are high-energy radiation, originated outside the solar system, composed of 90% protons, 9% α-particles, and a small percentage of heavy ions (~1%)

• Because of high charge \rightarrow heavy ions contribute to dose and dose equivalent received in spaceflight ($dE/dX \sim MZ^2$)

• As NASA’s future plans include extended human mission in deep space, these exposures take priority

• Detailed understanding of transport of these heavy ions through matter is needed, as crew will be inside shielded spacecraft, or in habitats.
Introduction (cont.)

• Fragmentation cross sections play a key role in:
 • transport calculations
 • Estimates of dose and dose equivalent

• Accurate and precise database of nuclear reaction cross sections is needed to modelers for both code development and validation purposes

• The purpose of this work is to validate nuclear physics models, used in shielding design and dose calculations, against available experimental data and other models.
Experimental data

• Zeitlin et al. reported fragmentation cross sections measured for ^{16}O beam at 600MeV/u incident on targets of H, C, and Al, and other targets [Physical Review C 83, 34909 (2011)]

• We investigated the fragmentation cross sections for H, C and Al targets. Why?
 • H and C \rightarrow Soft Tissue
 • Al \rightarrow Spacecraft walls
Schematic of space radiation protection problem

GCR Flux for selected nuclei at Solar Minimum (Created by CREME96)
Nuclear Interaction Mechanism

• Interaction of projectile with target nucleus is divided into:
 1. Dynamical stage \rightarrow highly excited fragments are formed through direct reactions and pre-equilibrium reactions
 2. Statistical stage \rightarrow highly excited fragments lose their excitation energies by emission of light particles and γ-rays and finally reach their ground states
1. **SAPTON**: Scattering And Production Theory of Nuclei: modified statistical model with final state interaction

2. **Geant4**: Geometry and tracking 4: is a toolkit for simulations of the passage of particles through matter:
 a) G4-INCLXX: Updated version of the intranuclear cascade model (INCL++) that can handle heavy-ion collisions.
 b) G4-Shielding: Based on Bertini model, and Quantum-Molecular-Dynamics (QMD) model.
SAPTON

- SAPTON is a modified version of the standard statistical model.
- It has a final-state interaction between the emitted fragments.
- It distinguishes itself from other models in at least one important aspect:

 It includes the possibility that the fragments are being emitted in the ground states, excited states, as well as in the continuum.

- Double differential cross-section for the production of a pair of fragments A_1 and A_2 is given by

$$
\frac{d^2\sigma}{d\Omega dE} \propto \int \frac{T_1(\varepsilon)\rho_1(U_1)\rho_2(U_2)}{\rho_c(U_c)} dU_1 dU_2
$$

where

- $T_1(\varepsilon)$ is the transmission Coefficient between the pair with relative energy ε
- ρ_1, ρ_2 are their level densities
- U_1, U_2 are their excitation energies
- ρ_c, U_c are the level density and excitation energy of the composite system
• $T_l(\varepsilon)$ represents the final-state interaction between the fragments in the exit channel

• It is calculated from a realistic complex optical potential

$$T_l(\varepsilon) = 1 - |S_l|^2$$

• The existence of such potential governs the dynamics of the fragmentation process entirely by dividing it into various reaction channels according to various relative angular momentum l-values (which are related to the impact parameter)

• This allows fragments to be emitted in ground, excited states, as well as in the continuum \rightarrow fragments might be unstable while detected (similar to fission-like process)
600 MeV/u 16O + 27Al

\[\sigma_Z (\text{mb}) \]

- Zeitlin et al.
- SAPTON
- G4INCLXX
- G4SHEILDING

Charge Z

APS April Meeting 2019

M.S Sabra
Conclusions

• SAPTON shows better agreement with data → statistical stage dominates

• Both G4-INCLXX and G4-Shielding overestimate production cross sections of $Z \leq 2$, while underestimate that of $Z = 4$ → dynamical stage dominates.

• Fragments cross sections increase with target mass for SAPTON (consistent to data), but not for Geant4 models → dynamical stage vs. statistical stage

Thank You! Questions?